Advertisement

Journal of High Energy Physics

, 2018:66 | Cite as

Two-loop master integrals for heavy-to-light form factors of two different massive fermions

Open Access
Regular Article - Theoretical Physics
  • 48 Downloads

Abstract

We calculate the full set of the two-loop master integrals for heavy-to-light form factors of two different massive fermions for arbitrary momentum transfer in NNLO QCD or QED corrections. These integrals allow to determine the two-loop QCD or QED corrections to the amplitudes for heavy-to-light form factors of two massive fermions in a full analytical way, without any approximations. The analytical results of the master integrals are derived using the method of differential equations, along with a proper choosing of canonical basis for the master integrals. All the results of master integrals are expressed in terms of Goncharov polylogarithms.

Keywords

Perturbative QCD Precision QED 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2018_7597_MOESM1_ESM.m (58 kb)
ESM 1 (M 58 kb)
13130_2018_7597_MOESM2_ESM.m (1001 kb)
ESM 2 (M 1001 kb)

References

  1. [1]
    K.G. Chetyrkin, R. Harlander, T. Seidensticker and M. Steinhauser, Second order QCD corrections to Γ(tW b), Phys. Rev. D 60 (1999) 114015 [hep-ph/9906273] [INSPIRE].
  2. [2]
    I.R. Blokland, A. Czarnecki, M. Slusarczyk and F. Tkachov, Heavy to light decays with a two loop accuracy, Phys. Rev. Lett. 93 (2004) 062001 [hep-ph/0403221] [INSPIRE].
  3. [3]
    A. Czarnecki, M. Slusarczyk and F.V. Tkachov, Enhancement of the hadronic b quark decays, Phys. Rev. Lett. 96 (2006) 171803 [hep-ph/0511004] [INSPIRE].
  4. [4]
    M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left({\alpha}_s^2\right) \) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].
  5. [5]
    J. Gao, C.S. Li and H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Bonciani and A. Ferroglia, Two-loop QCD corrections to the heavy-to-light quark decay, JHEP 11 (2008) 065 [arXiv:0809.4687] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    H.M. Asatrian, C. Greub and B.D. Pecjak, NNLO corrections to \( \overline{B}\to X(u)l\overline{\nu} \) in the shape-function region, Phys. Rev. D 78 (2008) 114028 [arXiv:0810.0987] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Beneke, T. Huber and X.Q. Li, Two-loop QCD correction to differential semi-leptonic bu decays in the shape-function region, Nucl. Phys. B 811 (2009) 77 [arXiv:0810.1230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    G. Bell, NNLO corrections to inclusive semileptonic B decays in the shape-function region, Nucl. Phys. B 812 (2009) 264 [arXiv:0810.5695] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    A. Pak and A. Czarnecki, Mass effects in muon and semileptonic bc decays, Phys. Rev. Lett. 100 (2008) 241807 [arXiv:0803.0960] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Pak and A. Czarnecki, Heavy-to-heavy quark decays at NNLO, Phys. Rev. D 78 (2008) 114015 [arXiv:0808.3509] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Dowling, A. Pak and A. Czarnecki, Semi-leptonic b-decay at intermediate recoil, Phys. Rev. D 78 (2008) 074029 [arXiv:0809.0491] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Arbuzov and K. Melnikov, O(α 2 ln(m μ /m e)) corrections to electron energy spectrum in muon decay, Phys. Rev. D 66 (2002) 093003 [hep-ph/0205172] [INSPIRE].
  14. [14]
    C. Anastasiou, K. Melnikov and F. Petriello, The electron energy spectrum in muon decay through O(α 2), JHEP 09 (2007) 014 [hep-ph/0505069] [INSPIRE].
  15. [15]
    A. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158.ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123.ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  19. [19]
    M. Argeri and P. Mastrolia, Feynman diagrams and differential equations, Int. J. Mod. Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  23. [23]
    M. Argeri et al., Magnus and dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    X. Liu, Y.-Q. Ma and C.-Y. Wang, A systematic and efficient method to compute multi-loop master integrals, arXiv:1711.09572 [INSPIRE].
  25. [25]
    J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].
  28. [28]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Di Vita, P. Mastrolia, U. Schubert and V. Yundin, Three-loop master integrals for ladder-box diagrams with one massive leg, JHEP 09 (2014) 148 [arXiv:1408.3107] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Bell and T. Huber, Master integrals for the two-loop penguin contribution in non-leptonic B-decays, JHEP 12 (2014) 129 [arXiv:1410.2804] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Huber and S. Kränkl, Two-loop master integrals for non-leptonic heavy-to-heavy decays, JHEP 04 (2015) 140 [arXiv:1503.00735] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Bonciani et al., Next-to-leading order QCD corrections to the decay width H, JHEP 08 (2015) 108 [arXiv:1505.00567] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Gehrmann, S. Guns and D. Kara, The rare decay HZγ in perturbative QCD, JHEP 09 (2015) 038 [arXiv:1505.00561] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    R. Bonciani, S. Di Vita, P. Mastrolia and U. Schubert, Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering, JHEP 09 (2016) 091 [arXiv:1604.08581] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Mastrolia, M. Passera, A. Primo and U. Schubert, Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs, JHEP 11 (2017) 198 [arXiv:1709.07435] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. B 702 (2004) 359] [hep-ph/0301170] [INSPIRE].
  38. [38]
    T. Huber, On a two-loop crossed six-line master integral with two massive lines, JHEP 03 (2009) 024 [arXiv:0901.2133] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Bell, Higher order QCD corrections in exclusive charmless B decays, arXiv:0705.3133 [INSPIRE].
  40. [40]
    G. Bell, NNLO vertex corrections in charmless hadronic B decays: Imaginary part, Nucl. Phys. B 795 (2008) 1 [arXiv:0705.3127] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.V. Smirnov, Algorithm FIRE —- Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  47. [47]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  48. [48]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015].
  49. [49]
    D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  50. [50]
    D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].
  51. [51]
    H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to Li n and Li 2,2 and on the evaluation thereof, JHEP 03 (2016) 189 [arXiv:1601.02649] [INSPIRE].
  52. [52]
    L.-B. Chen and C.-F. Qiao, Two-loop QCD corrections to B c meson leptonic decays, Phys. Lett. B 748 (2015) 443 [arXiv:1503.05122] [INSPIRE].
  53. [53]
    M. Argeri, P. Mastolia and E. Remiddi, The analytic value of the sunrise self-mass with two equal masses and the external invariant equal to the third squared mass, [Nucl. Phys. B 631 (2002) 388.Google Scholar
  54. [54]
    L.-B. Chen, Y. Liang and C.-F. Qiao, Two-loop integrals for CP-even heavy quarkonium production and decays, JHEP 06 (2017) 025 [arXiv:1703.03929] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].
  56. [56]
    J. Gluza, K. Kajda and T. Riemann, AMBRE: a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun. 177 (2007) 879 [arXiv:0704.2423] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    J. Gluza, K. Kajda, T. Riemann and V. Yundin, Numerical evaluation of tensor Feynman integrals in euclidean kinematics, Eur. Phys. J. C 71 (2011) 1516 [arXiv:1010.1667] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Blümlein et al., Non-planar Feynman integrals, Mellin-Barnes representations, multiple sums, PoS(LL2014)052 [arXiv:1407.7832] [INSPIRE].
  59. [59]
    A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun. 185 (2014) 2090 [arXiv:1312.3186] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  61. [61]
    S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].
  62. [62]
    S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  63. [63]
    G. Degrassi and A. Vicini, Two loop renormalization of the electric charge in the standard model, Phys. Rev. D 69 (2004) 073007 [hep-ph/0307122] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Physics & Electronic EngineeringGuangzhou UniversityGuangzhouChina

Personalised recommendations