Journal of High Energy Physics

, 2018:65 | Cite as

Inhomogeneous tensionless superstrings

  • Arjun Bagchi
  • Aritra Banerjee
  • Shankhadeep Chakrabortty
  • Pulastya Parekh
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We construct a novel tensionless limit of Superstring theory that realises the Inhomogeneous Super Galilean Conformal Algebra (SGCA I ) as the residual symmetry in the analogue of the conformal gauge, as opposed to previous constructions of the tensionless superstring, where a smaller symmetry algebra called the Homogeneous SGCA emerged as the residual gauge symmetry on the worldsheet. We obtain various features of the new tensionless theory intrinsically as well as from a systematic limit of the corresponding features of the tensile theory. We discuss why it is desirable and also natural to work with this new tensionless limit and the larger algebra.

Keywords

Conformal and W Symmetry Superspaces Superstrings and Heterotic Strings Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Schild, Classical null strings, Phys. Rev. D 16 (1977) 1722 [INSPIRE].
  2. [2]
    D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].
  4. [4]
    D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].
  6. [6]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  7. [7]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].
  8. [8]
    M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    E. Witten, Spacetime reconstruction, talk given at JHS/60: Conference in Honor of John Schwarzs 60th Birthday, November 3-4, California Institute of Technology, Pasadena (2001).Google Scholar
  11. [11]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].
  12. [12]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].
  13. [13]
    M.R. Gaberdiel and R. Gopakumar, Higher spins & strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M.R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS 3 from the worldsheet, JHEP 07 (2017) 090 [arXiv:1704.08665] [INSPIRE].
  15. [15]
    K. Ferreira, Even spin \( \mathcal{N}=4 \) holography, JHEP 09 (2017) 110 [arXiv:1702.02641] [INSPIRE].
  16. [16]
    K. Ferreira, M.R. Gaberdiel and J.I. Jottar, Higher spins on AdS 3 from the worldsheet, JHEP 07 (2017) 131 [arXiv:1704.08667] [INSPIRE].
  17. [17]
    J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys. B 310 (1988) 291 [INSPIRE].
  18. [18]
    M.J. Bowick and S.B. Giddings, High temperature strings, Nucl. Phys. B 325 (1989) 631 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.B. Giddings, Strings at the Hagedorn temperature, Phys. Lett. B 226 (1989) 55 [INSPIRE].
  20. [20]
    R.D. Pisarski and O. Alvarez, Strings at finite temperature and deconfinement, Phys. Rev. D 26 (1982) 3735 [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Olesen, Strings, tachyons and deconfinement, Phys. Lett. B 160 (1985) 408.Google Scholar
  22. [22]
    J. Isberg, U. Lindström, B. Sundborg and G. Theodoridis, Classical and quantized tensionless strings, Nucl. Phys. B 411 (1994) 122 [hep-th/9307108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].
  24. [24]
    A. Bagchi, R. Basu and A. Mehra, Galilean conformal electrodynamics, JHEP 11 (2014) 061 [arXiv:1408.0810] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Galilean Yang-Mills theory, JHEP 04 (2016) 051 [arXiv:1512.08375] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Bagchi and R. Fareghbal, BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, The flat limit of three dimensional asymptotically Anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].
  29. [29]
    A. Bagchi, S. Detournay and D. Grumiller, Flat-space chiral gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3D flat cosmological horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].
  31. [31]
    G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].
  32. [32]
    G. Barnich, A. Gomberoff and H.A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory, Phys. Rev. D 87 (2013) 124032 [arXiv:1210.0731] [INSPIRE].
  33. [33]
    A. Bagchi, M. Gary and Zodinmawia, Bondi-Metzner-Sachs bootstrap, Phys. Rev. D 96 (2017) 025007 [arXiv:1612.01730] [INSPIRE].
  34. [34]
    A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat holography: aspects of the dual field theory, JHEP 12 (2016) 147 [arXiv:1609.06203] [INSPIRE].
  35. [35]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].
  36. [36]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].
  37. [37]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups, J. Phys. A 47 (2014) 335204 [arXiv:1403.4213] [INSPIRE].
  38. [38]
    J. Hartong, Holographic reconstruction of 3D flat space-time, JHEP 10 (2016) 104 [arXiv:1511.01387] [INSPIRE].
  39. [39]
    A. Bagchi, Tensionless strings and galilean conformal algebra, JHEP 05 (2013) 141 [arXiv:1303.0291] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless strings from worldsheet symmetries, JHEP 01 (2016) 158 [arXiv:1507.04361] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    U. Lindström, B. Sundborg and G. Theodoridis, The zero tension limit of the spinning string, Phys. Lett. B 258 (1991) 331 [INSPIRE].
  42. [42]
    A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless superstrings: view from the worldsheet, JHEP 10 (2016) 113 [arXiv:1606.09628] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J. Gamboa, C. Ramirez and M. Ruiz-Altaba, Quantum null (super)strings, Phys. Lett. B 225 (1989) 335 [INSPIRE].
  44. [44]
    J. Gamboa, C. Ramirez and M. Ruiz-Altaba, Null spinning strings, Nucl. Phys. B 338 (1990) 143 [INSPIRE].
  45. [45]
    G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Asymptotic symmetries and dynamics of three-dimensional flat supergravity, JHEP 08 (2014) 071 [arXiv:1407.4275] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    I. Mandal and A. Rayyan, Super-GCA from \( \mathcal{N}=\left(2,2\right) \) super-Virasoro, Phys. Lett. B 754 (2016) 195 [arXiv:1601.04723] [INSPIRE].
  47. [47]
    I. Mandal, Addendum to “Super-GCA from \( \mathcal{N}=\left(2,2\right) \) super-Virasoro”: Super-GCA connection with tensionless strings, Phys. Lett. B 760 (2016) 832 [arXiv:1607.02439] [INSPIRE].
  48. [48]
    A. Bagchi, R. Gopakumar, I. Mandal and A. Miwa, GCA in 2d, JHEP 08 (2010) 004 [arXiv:0912.1090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    A. Karlhede and U. Lindström, The classical bosonic string in the zero tension limit, Class. Quant. Grav. 3 (1986) L73 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quantization of the null string and absence of critical dimensions, Phys. Lett. B 182 (1986) 326 [INSPIRE].
  51. [51]
    A. Sagnotti, Notes on strings and higher spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].
  52. [52]
    G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].
  53. [53]
    G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Super-BMS 3 invariant boundary theory from three-dimensional flat supergravity, JHEP 01 (2017) 029 [arXiv:1510.08824] [INSPIRE].
  54. [54]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge University Press, Cambridge U.K. (1988).Google Scholar
  55. [55]
    I. Mandal, Supersymmetric extension of GCA in 2d, JHEP 11 (2010) 018 [arXiv:1003.0209] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    I. Lodato and W. Merbis, Super-BMS 3 algebras from \( \mathcal{N}=2 \) flat supergravities, JHEP 11 (2016) 150 [arXiv:1610.07506] [INSPIRE].
  57. [57]
    R. Basu, S. Detournay and M. Riegler, Spectral flow in 3D flat spacetimes, JHEP 12 (2017) 134 [arXiv:1706.07438] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    O. Fuentealba, J. Matulich and R. Troncoso, Asymptotic structure of \( \mathcal{N}=2 \) supergravity in 3D: extended super-BMS 3 and nonlinear energy bounds, JHEP 09 (2017) 030 [arXiv:1706.07542] [INSPIRE].
  59. [59]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    E. Casali, Y. Herfray and P. Tourkine, The complex null string, Galilean conformal algebra and scattering equations, JHEP 10 (2017) 164 [arXiv:1707.09900] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K. Lee, S.-J. Rey and J.A. Rosabal, A string theory which isn’t about strings, JHEP 11 (2017) 172 [arXiv:1708.05707] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology KanpurKanpurIndia
  2. 2.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Indian Institute of Technology RoparRupnagarIndia

Personalised recommendations