Advertisement

Journal of High Energy Physics

, 2018:64 | Cite as

Deformations of vector-scalar models

  • Glenn Barnich
  • Nicolas Boulanger
  • Marc Henneaux
  • Bernard Julia
  • Victor Lekeu
  • Arash Ranjbar
Open Access
Regular Article - Theoretical Physics

Abstract

Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations (“gaugings”), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

Keywords

BRST Quantization Gauge Symmetry Global Symmetries Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.K. Das, SO(4) Invariant Extended Supergravity, Phys. Rev. D 15 (1977) 2805 [INSPIRE].ADSGoogle Scholar
  2. [2]
    E. Cremmer and J. Scherk, Algebraic Simplifications in Supergravity Theories, Nucl. Phys. B 127 (1977) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Cremmer, J. Scherk and S. Ferrara, SU(4) Invariant Supergravity Theory, Phys. Lett. B 74 (1978) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G.W. Gibbons and D.A. Rasheed, Electric-magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    S. Deser and C. Teitelboim, Duality Transformations of Abelian and Nonabelian Gauge Fields, Phys. Rev. D 13 (1976) 1592 [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. Bunster and M. Henneaux, Can (Electric-Magnetic) Duality Be Gauged?, Phys. Rev. D 83 (2011) 045031 [arXiv:1011.5889] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Bunster and M. Henneaux, Sp(2n, R) electric-magnetic duality as off-shell symmetry of interacting electromagnetic and scalar fields, PoS(HRMS)028 [arXiv:1101.6064] [INSPIRE].
  10. [10]
    G. Barnich and A. Gomberoff, Dyons with potentials: Duality and black hole thermodynamics, Phys. Rev. D 78 (2008) 025025 [arXiv:0705.0632] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E.S. Fradkin and M.A. Vasiliev, Model of supergravity with minimal electromagnetic interaction, LEBEDEV-76-197 (1976) [INSPIRE].
  13. [13]
    B. de Wit and H. Nicolai, N=8 Supergravity with Local SO(8) × SU(8) Invariance, Phys. Lett. B 108 (1982) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Deser and R. Arnowitt, Interaction Among Gauge Vector Fields, Nucl. Phys. 49 (1963) 133.CrossRefGoogle Scholar
  17. [17]
    G. Barnich, M. Henneaux and R. Tatar, Consistent interactions between gauge fields and the local BRST cohomology: The Example of Yang-Mills models, Int. J. Mod. Phys. D 3 (1994) 139 [hep-th/9307155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Andrianopoli, R. D’Auria, S. Ferrara and M.A. Lledó, Gauging of flat groups in four-dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C.M. Hull, New gauged N = 8, D = 4 supergravities, Class. Quant. Grav. 20 (2003) 5407 [hep-th/0204156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP 03 (2016) 138 [arXiv:1512.04500] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Henneaux, B. Julia, V. Lekeu and A. Ranjbar, A note on ‘gaugings’ in four spacetime dimensions and electric-magnetic duality, Class. Quant. Grav. 35 (2018) 037001 [arXiv:1709.06014] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett. B 311 (1993) 123 [hep-th/9304057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    B. Julia, Effective Gauge Fields and Generalized Noether Theorem, in Current Problems In Particle Theory, proceedings of 4th Johns Hopkins Workshop, Bad Honnef, Bonn, 2-4 June 1980, pp. 295-313.Google Scholar
  29. [29]
    B. de Wit, C.M. Hull and M. Roček, New Topological Terms in Gauge Invariant Actions, Phys. Lett. B 184 (1987) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in the antifield formalism. 1. General theorems, Commun. Math. Phys. 174 (1995) 57 [hep-th/9405109] [INSPIRE].
  31. [31]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in the antifield formalism. II. Application to Yang-Mills theory, Commun. Math. Phys. 174 (1995) 93 [hep-th/9405194] [INSPIRE].
  32. [32]
    J.M.L. Fisch and M. Henneaux, Homological Perturbation Theory and the Algebraic Structure of the Antifield-Antibracket Formalism for Gauge Theories, Commun. Math. Phys. 128 (1990) 627 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    M. Henneaux, Space-time Locality of the BRST Formalism, Commun. Math. Phys. 140 (1991) 1 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    M. Gerstenhaber, On the Deformation of Rings and Algebras, Annals Math. 79 (1963) 59 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    A. Nijenhuis and R. Richardson Jr., Cohomology and deformations in graded Lie algebras, Bull. Am. Math. Soc. 72 (1966) 1.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    B. Julia, Cohomologies and deformations of “gauge” symmetries, in Topological and Geometrical Methods in Field Theory, Proc. Espo (Finland) 1986 Symposium, J. Hietarinta and J. Westerholm eds., World Scientific, Singapore (1986), p. 325.Google Scholar
  37. [37]
    B. Julia, A relation between gauge groups and diffeomorphism groups, in Infinite Lie Algebras and Conformal Invariance in Condensed Matter and Particle Physics, Proc. Bonn (RFA) 1986, K.Dietz and V. Rittenberg eds., World Scientific, Singapore (1987), p. 175.Google Scholar
  38. [38]
    I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    I.A. Batalin and G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent Generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].
  40. [40]
    M. Henneaux, Consistent interactions between gauge fields: The Cohomological approach, Contemp. Math. 219 (1998) 93 [hep-th/9712226] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press (1992).Google Scholar
  42. [42]
    J. Gomis, J. París and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].
  43. [43]
    M. Dubois-Violette, M. Talon and C.M. Viallet, BRS Algebras: Analysis of the Consistency Equations in Gauge Theory, Commun. Math. Phys. 102 (1985) 105 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    V.S. Retakh, Lie-Massey brackets and n-homotopically multiplicative maps of differential graded Lie algebras, J. Pure Appl. Algebra 89 (1993) 217.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    D. Fuchs and L.L. Weldon, Massey brackets and deformations, J. Pure Appl. Algebra 156 (2001) 215.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rept. 338 (2000) 439 [hep-th/0002245] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    F. Brandt, M. Henneaux and A. Wilch, Global symmetries in the antifield formalism, Phys. Lett. B 387 (1996) 320 [hep-th/9606172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    F. Brandt, M. Henneaux and A. Wilch, Extended antifield formalism, Nucl. Phys. B 510 (1998) 640 [hep-th/9705007] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    M. Henneaux, B. Knaepen and C. Schomblond, Characteristic cohomology of p form gauge theories, Commun. Math. Phys. 186 (1997) 137 [hep-th/9606181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    G. Barnich and M. Henneaux, Isomorphisms between the Batalin-Vilkovisky anti-bracket and the Poisson bracket, J. Math. Phys. 37 (1996) 5273 [hep-th/9601124] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    M. Dubois-Violette, M. Talon and C.M. Viallet, New Results on BRS Cohomology in Gauge Theory, Phys. Lett. B 158 (1985) 231 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    M. Dubois-Violette, M. Talon and C.M. Viallet, Anomalous terms in gauge theory: Relevance of the structure group, Ann. Inst. H. Poincare Phys. Theor 44 (1986) 103.MathSciNetMATHGoogle Scholar
  53. [53]
    F. Brandt, N. Dragon and M. Kreuzer, Completeness and Nontriviality of the Solutions of the Consistency Conditions, Nucl. Phys. B 332 (1990) 224 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Dubois-Violette, M. Henneaux, M. Talon and C.-M. Viallet, General solution of the consistency equation, Phys. Lett. B 289 (1992) 361 [hep-th/9206106] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    G. Barnich and N. Boulanger, A note on local BRST cohomology of gauge theories with free abelian factors, to appear (2017).Google Scholar
  56. [56]
    M.K. Gaillard and B. Zumino, Duality Rotations for Interacting Fields, Nucl. Phys. B 193 (1981) 221 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity-Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Brandt, Gauge theories of space-time symmetries, Phys. Rev. D 64 (2001) 065025 [hep-th/0105010] [INSPIRE].ADSGoogle Scholar
  59. [59]
    V.A. Tsokur and Yu.M. Zinovev, Dual versions of extended supergravities, Phys. Lett. B 378 (1996) 120 [hep-th/9503064] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Das, M. Fischler and M. Roček, SuperHiggs Effect in a New Class of Scalar Models and a Model of Super QED, Phys. Rev. D 16 (1977) 3427 [INSPIRE].ADSGoogle Scholar
  61. [61]
    D.Z. Freedman and J.H. Schwarz, N = 4 Supergravity Theory with Local SU(2) × SU(2) Invariance, Nucl. Phys. B 137 (1978) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S.J. Gates Jr. and B. Zwiebach, Gauged N = 4 Supergravity Theory With a New Scalar Potential, Phys. Lett. B 123 (1983) 200 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    X. Bekaert and S. Cucu, Deformations of duality symmetric theories, Nucl. Phys. B 610 (2001) 433 [hep-th/0104048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    S.C. Anco and J. Pohjanpelto, Conserved currents of massless fields of spin s ≥ 1/2, Proc. Roy. Soc. Lond. A 459 (2003) 1215 [math-ph/0202019] [INSPIRE].
  65. [65]
    J. Pohjanpelto and S.C. Anco, Generalized Symmetries of Massless Free Fields on Minkowski Space, SIGMA 4 (2008) 004 [arXiv:0801.1892] [INSPIRE].MathSciNetMATHGoogle Scholar
  66. [66]
    C.G. Torre, Natural symmetries of the Yang-Mills equations, J. Math. Phys. 36 (1995) 2113 [hep-th/9407129] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in Einstein Yang-Mills theory, Nucl. Phys. B 455 (1995) 357 [hep-th/9505173] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    I. Anderson, The variational bicomplex, Tech. Rep., Formal Geometry and Mathematical Physics, Department of Mathematics, Utah State University (1989).Google Scholar
  69. [69]
    F. Coomans, J. De Rydt and A. Van Proeyen, Generalized gaugings and the field-antifield formalism, JHEP 03 (2010) 105 [arXiv:1001.2560] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    P. Ramond and V.G.J. Rodgers, Algebraic structure of open string interactions, Phys. Rev. D 34 (1986) 2352 [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Glenn Barnich
    • 1
  • Nicolas Boulanger
    • 1
    • 2
  • Marc Henneaux
    • 1
    • 3
  • Bernard Julia
    • 3
  • Victor Lekeu
    • 1
  • Arash Ranjbar
    • 1
  1. 1.Université libre de Bruxelles and International Solvay InstitutesBrusselsBelgium
  2. 2.Groupe de Mécanique et Gravitation, Physique Théorique et MathématiqueUniversité de Mons — UMONSMonsBelgium
  3. 3.Laboratoire de Physique théorique de l’Ecole Normale SupérieureParis CEDEXFrance

Personalised recommendations