Journal of High Energy Physics

, 2018:55 | Cite as

A study of invisible neutrino decay at DUNE and its effects on θ23 measurement

  • Sandhya Choubey
  • Srubabati Goswami
  • Dipyaman Pramanik
Open Access
Regular Article - Experimental Physics
  • 28 Downloads

Abstract

We study the consequences of invisible decay of neutrinos in the context of the DUNE experiment. We assume that the third mass eigenstate is unstable and decays to a light sterile neutrino and a scalar or a pseudo-scalar. We consider DUNE running in 5 years neutrino and 5 years antineutrino mode and a detector volume of 40 kt. We obtain the expected sensitivity on the rest-frame life-time τ3 normalized to the mass m3 as τ3/m3 > 4.50 × 10−11 s/eV at 90% C.L. for a normal hierarchical mass spectrum. We also find that DUNE can discover neutrino decay for τ3/m3 > 4.27 × 10−11 s/eV at 90% C.L. In addition, for an unstable ν3 with an illustrative value of τ3/m3 = 1.2 × 10−11 s/eV, the no decay case could get disfavoured at the 3σ C.L. At 90% C.L. the expected precision range for this true value is obtained as 1.71 × 10−11 > τ3/m3 > 9.29 × 10−12 in units of s/eV. We also study the correlation between a non-zero τ3/m3 and standard oscillation parameters and find an interesting correlation in the appearance and disappearance channels with the mixing angle θ23. This alters the octant sensitivity of DUNE, favorably (unfavorably) for true θ23 in the lower (higher) octant. The effect of a decaying neutrino does not alter the hierarchy or CP violation discovery sensitivity of DUNE in a discernible way.

Keywords

Lifetime Neutrino Detectors and Telescopes (experiments) Oscillation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: Status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T2K collaboration, K. Abe et al., Combined Analysis of Neutrino and Antineutrino Oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  4. [4]
    NOvA collaboration, P. Adamson et al., First measurement of electron neutrino appearance in NOvA, Phys. Rev. Lett. 116 (2016) 151806 [arXiv:1601.05022] [INSPIRE].
  5. [5]
    NOvA collaboration, P. Adamson et al., Constraints on Oscillation Parameters from ν e Appearance and ν μ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  6. [6]
    S. Goswami and N. Nath, Implications of the latest NOνA results, arXiv:1705.01274 [INSPIRE].
  7. [7]
    A. Acker, S. Pakvasa and J.T. Pantaleone, Decaying Dirac neutrinos, Phys. Rev. D 45 (1992) 1 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Acker and S. Pakvasa, Solar neutrino decay, Phys. Lett. B 320 (1994) 320 [hep-ph/9310207] [INSPIRE].
  9. [9]
    G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Pakvasa, Do neutrinos decay?, AIP Conf. Proc. 542 (2000) 99 [hep-ph/0004077] [INSPIRE].
  12. [12]
    C.W. Kim and W.P. Lam, Some remarks on neutrino decay via a Nambu-Goldstone boson, Mod. Phys. Lett. A 5 (1990) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Acker, A. Joshipura and S. Pakvasa, A neutrino decay model, solar anti-neutrinos and atmospheric neutrinos, Phys. Lett. B 285 (1992) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Lindner, T. Ohlsson and W. Winter, A combined treatment of neutrino decay and neutrino oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170] [INSPIRE].
  15. [15]
    P. Coloma and O.L.G. Peres, Visible neutrino decay at DUNE, arXiv:1705.03599 [INSPIRE].
  16. [16]
    A.M. Gago, R.A. Gomes, A.L.G. Gomes, J. Jones-Perez and O.L.G. Peres, Visible neutrino decay in the light of appearance and disappearance long baseline experiments, JHEP 11 (2017) 022 [arXiv:1705.03074] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.N. Bahcall, N. Cabibbo and A. Yahil, Are neutrinos stable particles?, Phys. Rev. Lett. 28 (1972) 316 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Z.G. Berezhiani, G. Fiorentini, M. Moretti and A. Rossi, Fast neutrino decay and solar neutrino detectors, Z. Phys. C 54 (1992) 581 [INSPIRE].ADSGoogle Scholar
  19. [19]
    Z.G. Berezhiani, M. Moretti and A. Rossi, Matter induced neutrino decay and solar anti-neutrinos, Z. Phys. C 58 (1993) 423 [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Choubey, S. Goswami and D. Majumdar, Status of the neutrino decay solution to the solar neutrino problem, Phys. Lett. B 484 (2000) 73 [hep-ph/0004193] [INSPIRE].
  21. [21]
    A. Bandyopadhyay, S. Choubey and S. Goswami, MSW mediated neutrino decay and the solar neutrino problem, Phys. Rev. D 63 (2001) 113019 [hep-ph/0101273] [INSPIRE].
  22. [22]
    A.S. Joshipura, E. Masso and S. Mohanty, Constraints on decay plus oscillation solutions of the solar neutrino problem, Phys. Rev. D 66 (2002) 113008 [hep-ph/0203181] [INSPIRE].
  23. [23]
    A. Bandyopadhyay, S. Choubey and S. Goswami, Neutrino decay confronts the SNO data, Phys. Lett. B 555 (2003) 33 [hep-ph/0204173] [INSPIRE].
  24. [24]
    R. Picoreti, M.M. Guzzo, P.C. de Holanda and O.L.G. Peres, Neutrino Decay and Solar Neutrino Seasonal Effect, Phys. Lett. B 761 (2016) 70 [arXiv:1506.08158] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Berryman, A. de Gouvêa and D. Hernandez, Solar Neutrinos and the Decaying Neutrino Hypothesis, Phys. Rev. D 92 (2015) 073003 [arXiv:1411.0308] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.A. Frieman, H.E. Haber and K. Freese, Neutrino Mixing, Decays and Supernova Sn1987a, Phys. Lett. B 200 (1988) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.M. LoSecco, What the atmospheric neutrino anomaly is not, hep-ph/9809499 [INSPIRE].
  28. [28]
    V.D. Barger, J.G. Learned, S. Pakvasa and T.J. Weiler, Neutrino decay as an explanation of atmospheric neutrino observations, Phys. Rev. Lett. 82 (1999) 2640 [astro-ph/9810121] [INSPIRE].
  29. [29]
    P. Lipari and M. Lusignoli, On exotic solutions of the atmospheric neutrino problem, Phys. Rev. D 60 (1999) 013003 [hep-ph/9901350] [INSPIRE].
  30. [30]
    G.L. Fogli, E. Lisi, A. Marrone and G. Scioscia, Super-Kamiokande data and atmospheric neutrino decay, Phys. Rev. D 59 (1999) 117303 [hep-ph/9902267] [INSPIRE].
  31. [31]
    S. Choubey and S. Goswami, Is neutrino decay really ruled out as a solution to the atmospheric neutrino problem from Super-Kamiokande data?, Astropart. Phys. 14 (2000) 67 [hep-ph/9904257] [INSPIRE].
  32. [32]
    V.D. Barger, J.G. Learned, P. Lipari, M. Lusignoli, S. Pakvasa and T.J. Weiler, Neutrino decay and atmospheric neutrinos, Phys. Lett. B 462 (1999) 109 [hep-ph/9907421] [INSPIRE].
  33. [33]
    Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [INSPIRE].
  34. [34]
    M.C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.A. Gomes, A.L.G. Gomes and O.L.G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    S. Choubey, D. Dutta and D. Pramanik, Constraining invisible neutrino decay from T2K and NOvA, work in progress (2018).Google Scholar
  37. [37]
    T. Abrahão, H. Minakata, H. Nunokawa and A.A. Quiroga, Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments, JHEP 11 (2015) 001 [arXiv:1506.02314] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Decay of high-energy astrophysical neutrinos, Phys. Rev. Lett. 90 (2003) 181301 [hep-ph/0211305] [INSPIRE].
  39. [39]
    M. Maltoni and W. Winter, Testing neutrino oscillations plus decay with neutrino telescopes, JHEP 07 (2008) 064 [arXiv:0803.2050] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Pakvasa, A. Joshipura and S. Mohanty, Explanation for the low flux of high energy astrophysical muon-neutrinos, Phys. Rev. Lett. 110 (2013) 171802 [arXiv:1209.5630] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Pagliaroli, A. Palladino, F.L. Villante and F. Vissani, Testing nonradiative neutrino decay scenarios with IceCube data, Phys. Rev. D 92 (2015) 113008 [arXiv:1506.02624] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Bustamante, J.F. Beacom and K. Murase, Testing decay of astrophysical neutrinos with incomplete information, Phys. Rev. D 95 (2017) 063013 [arXiv:1610.02096] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.M. Berryman, A. de Gouvêa, D. Hernández and R.L.N. Oliveira, Non-Unitary Neutrino Propagation From Neutrino Decay, Phys. Lett. B 742 (2015) 74 [arXiv:1407.6631] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet Int. 25 (1981) 297.ADSCrossRefGoogle Scholar
  45. [45]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects, arXiv:1601.05471 [INSPIRE].
  46. [46]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].
  47. [47]
    DUNE collaboration, J. Strait et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE, arXiv:1601.05823 [INSPIRE].
  48. [48]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF, arXiv:1601.02984 [INSPIRE].
  49. [49]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  50. [50]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  51. [51]
    S.K. Raut, Effect of non-zero θ 13 on the measurement of θ 23, Mod. Phys. Lett. A 28 (2013) 1350093 [arXiv:1209.5658] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sandhya Choubey
    • 1
    • 2
  • Srubabati Goswami
    • 3
  • Dipyaman Pramanik
    • 1
  1. 1.Harish-Chandra Research Institute, HBNIAllahabadIndia
  2. 2.Department of Physics, School of Engineering Sciences, KTH Royal Institute of TechnologyAlbaNova University CenterStockholmSweden
  3. 3.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations