Advertisement

Journal of High Energy Physics

, 2018:53 | Cite as

Symmetry breaking in holographic theories with Lifshitz scaling

  • Riccardo Argurio
  • Jelle Hartong
  • Andrea Marzolla
  • Daniel Naegels
Open Access
Regular Article - Theoretical Physics
  • 68 Downloads

Abstract

We study holographically Lifshitz-scaling theories with broken symmetries. In order to do this, we set up a bulk action with a complex scalar and a massless vector on a background which consists in a Lifshitz metric and a massive vector. We first study separately the complex scalar and the massless vector, finding a similar pattern in the twopoint functions that we can compute analytically. By coupling the probe complex scalar to the background massive vector we can construct probe actions that are more general than the usual Klein-Gordon action. Some of these actions have Galilean boost symmetry. Finally, in the presence of a symmetry breaking scalar profile in the bulk, we reproduce the expected Ward identities of a Lifshitz-scaling theory with a broken global continuous symmetry. In the spontaneous case, the latter imply the presence of a gapless mode, the Goldstone boson, which will have dispersion relations dictated by the Lifshitz scaling.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Multicritical Symmetry Breaking and Naturalness of Slow Nambu-Goldstone Bosons, Phys. Rev. D 88 (2013) 101701 [arXiv:1308.5967] [INSPIRE].ADSGoogle Scholar
  2. [2]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Scalar Field Theories with Polynomial Shift Symmetries, Commun. Math. Phys. 340 (2015) 985 [arXiv:1412.1046] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  3. [3]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking, Phys. Rev. Lett. 115 (2015) 241601 [arXiv:1507.06992] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    P. Hořava, Surprises with Nonrelativistic Naturalness, Int. J. Mod. Phys. D 25 (2016) 1645007 [arXiv:1608.06287] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  7. [7]
    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  8. [8]
    M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi Renormalization for Lifshitz Spacetime, JHEP 01 (2012) 058 [arXiv:1107.5562] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  9. [9]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  10. [10]
    T. Andrade and S.F. Ross, Boundary conditions for scalars in Lifshitz, Class. Quant. Grav. 30 (2013) 065009 [arXiv:1212.2572] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  11. [11]
    Y. Korovin, K. Skenderis and M. Taylor, Lifshitz as a deformation of Anti-de Sitter, JHEP 08 (2013) 026 [arXiv:1304.7776] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  12. [12]
    C. Keeler, G. Knodel and J.T. Liu, What do non-relativistic CFTs tell us about Lifshitz spacetimes?, JHEP 01 (2014) 062 [arXiv:1308.5689] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary Stress-Energy Tensor and Newton-Cartan Geometry in Lifshitz Holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  14. [14]
    C. Keeler, G. Knodel and J.T. Liu, Hidden horizons in non-relativistic AdS/CFT, JHEP 08 (2014) 024 [arXiv:1404.4877] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    W. Chemissany and I. Papadimitriou, Lifshitz holography: The whole shebang, JHEP 01 (2015) 052 [arXiv:1408.0795] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].CrossRefMATHADSGoogle Scholar
  17. [17]
    J. Hartong, E. Kiritsis and N.A. Obers, Field Theory on Newton-Cartan Backgrounds and Symmetries of the Lifshitz Vacuum, JHEP 08 (2015) 006 [arXiv:1502.00228] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    W. Sybesma and S. Vandoren, Lifshitz quasinormal modes and relaxation from holography, JHEP 05 (2015) 021 [arXiv:1503.07457] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    C. Keeler, G. Knodel, J.T. Liu and K. Sun, Universal features of Lifshitz Green’s functions from holography, JHEP 08 (2015) 057 [arXiv:1505.07830] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    V. Keranen, W. Sybesma, P. Szepietowski and L. Thorlacius, Correlation functions in theories with Lifshitz scaling, JHEP 05 (2017) 033 [arXiv:1611.09371] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  21. [21]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  22. [22]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  24. [24]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  26. [26]
    M. Edalati and J.F. Pedraza, Aspects of Current Correlators in Holographic Theories with Hyperscaling Violation, Phys. Rev. D 88 (2013) 086004 [arXiv:1307.0808] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Argurio, G. Giribet, A. Marzolla, D. Naegels and J.A. Sierra-Garcia, Holographic Ward identities for symmetry breaking in two dimensions, JHEP 04 (2017) 007 [arXiv:1612.00771] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  28. [28]
    G. Festuccia, D. Hansen, J. Hartong and N.A. Obers, Symmetries and Couplings of Non-Relativistic Electrodynamics, JHEP 11 (2016) 037 [arXiv:1607.01753] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Argurio, A. Marzolla, A. Mezzalira and D. Naegels, Note on holographic nonrelativistic Goldstone bosons, Phys. Rev. D 92 (2015) 066009 [arXiv:1507.00211] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R. Argurio, A. Marzolla, A. Mezzalira and D. Musso, Analytic pseudo-Goldstone bosons, JHEP 03 (2016) 012 [arXiv:1512.03750] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    V.A. Miransky and I.A. Shovkovy, Spontaneous symmetry breaking with abnormal number of Nambu-Goldstone bosons and kaon condensate, Phys. Rev. Lett. 88 (2002) 111601 [hep-ph/0108178] [INSPIRE].
  32. [32]
    T. Schäfer, D.T. Son, M.A. Stephanov, D. Toublan and J.J.M. Verbaarschot, Kaon condensation and Goldstone’s theorem, Phys. Lett. B 522 (2001) 67 [hep-ph/0108210] [INSPIRE].
  33. [33]
    H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance, Phys. Rev. Lett. 108 (2012) 251602 [arXiv:1203.0609] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    A. Kapustin, Remarks on nonrelativistic Goldstone bosons, arXiv:1207.0457 [INSPIRE].
  35. [35]
    H. Watanabe and H. Murayama, Nambu-Goldstone bosons with fractional-power dispersion relations, Phys. Rev. D 89 (2014) 101701 [arXiv:1403.3365] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Riccardo Argurio
    • 1
  • Jelle Hartong
    • 2
  • Andrea Marzolla
    • 1
  • Daniel Naegels
    • 1
  1. 1.Physique Théorique et Mathématique and International Solvay InstitutesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Institute for Theoretical Physics and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations