Advertisement

Journal of High Energy Physics

, 2018:50 | Cite as

Negative branes, supergroups and the signature of spacetime

  • Robbert Dijkgraaf
  • Ben Heidenreich
  • Patrick Jefferson
  • Cumrun Vafa
Open Access
Regular Article - Theoretical Physics

Abstract

We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3-branes, we show that SU(0|N) supergroup theories are holographically dual to an exotic variant of type IIB string theory on \( {\mathrm{dS}}_{3,2}\times {\overline{\mathrm{S}}}^5 \), for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov’s instanton calculus, all of which agree, we derive the Seiberg-Witten curve for \( \mathcal{N}=2 \) SU(N |M ) gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, though several puzzles remain.

Keywords

D-branes Gauge Symmetry String Duality AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Bars, Survey of two time physics, Class. Quant. Grav. 18 (2001) 3113 [hep-th/0008164] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C.M. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Vafa, Non-Unitary Holography, arXiv:1409.1603 [INSPIRE].
  4. [4]
    C. Vafa, Brane/anti-brane systems and U(N—M) supergroup, hep-th/0101218 [INSPIRE].
  5. [5]
    T. Okuda and T. Takayanagi, Ghost D-branes, JHEP 03 (2006) 062 [hep-th/0601024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C.M. Hull and R.R. Khuri, Branes, times and dualities, Nucl. Phys. B 536 (1998) 219 [hep-th/9808069] [INSPIRE].
  7. [7]
    C.M. Hull and R.R. Khuri, World volume theories, holography, duality and time, Nucl. Phys. B 575 (2000) 231 [hep-th/9911082] [INSPIRE].
  8. [8]
    M.P. Blencowe and M.J. Duff, Supermembranes and the Signature of Space-time, Nucl. Phys. B 310 (1988) 387 [INSPIRE].
  9. [9]
    S.E. Parkhomenko, Free Field Construction of D-branes in Rational Models of CFT and Gepner Models, SIGMA 4 (2008) 025 [arXiv:0802.3445] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  10. [10]
    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Supermatrix models revisited, to appear.Google Scholar
  11. [11]
    J.L. Cardy, Conformal Invariance and the Yang-lee Edge Singularity in Two-dimensions, Phys. Rev. Lett. 54 (1985) 1354 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
  13. [13]
    M.E. Fisher, Yang-Lee Edge Singularity and \( \varphi \) 3 Field Theory, Phys. Rev. Lett. 40 (1978) 1610 [INSPIRE].
  14. [14]
    T. Quella and V. Schomerus, Free fermion resolution of supergroup WZNW models, JHEP 09 (2007) 085 [arXiv:0706.0744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].
  16. [16]
    P. Mati, Critical scaling in the large-N O(N) model in higher dimensions and its possible connection to quantum gravity, Phys. Rev. D 94 (2016) 065025 [arXiv:1601.00450] [INSPIRE].
  17. [17]
    S. Arnone, Yu. A. Kubyshin, T.R. Morris and J.F. Tighe, A gauge invariant regulator for the ERG, Int. J. Mod. Phys. A 16 (2001) 1989 [hep-th/0102054] [INSPIRE].
  18. [18]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].
  19. [19]
    R. Kallosh and A. Rajaraman, Vacua of M-theory and string theory, Phys. Rev. D 58 (1998) 125003 [hep-th/9805041] [INSPIRE].
  20. [20]
    I. Bars, S.-H. Chen, P.J. Steinhardt and N. Turok, Antigravity and the Big Crunch/Big Bang Transition, Phys. Lett. B 715 (2012) 278 [arXiv:1112.2470] [INSPIRE].
  21. [21]
    I.J. Araya, I. Bars and A. James, Journey Beyond the Schwarzschild Black Hole Singularity, arXiv:1510.03396 [INSPIRE].
  22. [22]
    G.W. Moore, Finite in all directions, hep-th/9305139 [INSPIRE].
  23. [23]
    G.W. Moore, Symmetries and symmetry breaking in string theory, hep-th/9308052 [INSPIRE].
  24. [24]
    C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Gutperle and A. Strominger, Space-like branes, JHEP 04 (2002) 018 [hep-th/0202210] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Sethi, A New String in Ten Dimensions?, JHEP 09 (2013) 149 [arXiv:1304.1551] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M.J. Duff and J. Kalkkinen, Metric and coupling reversal in string theory, Nucl. Phys. B 760 (2007) 64 [hep-th/0605274] [INSPIRE].
  29. [29]
    M.J. Duff and J. Kalkkinen, Signature reversal invariance, Nucl. Phys. B 758 (2006) 161 [hep-th/0605273] [INSPIRE].
  30. [30]
    L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys. 52 (2004) 145 [hep-th/0310099] [INSPIRE].
  31. [31]
    H. Liu, G.W. Moore and N. Seiberg, Strings in a time dependent orbifold, JHEP 06 (2002) 045 [hep-th/0204168] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].
  34. [34]
    G. ’t Hooft, On the Convergence of Planar Diagram Expansions, Commun. Math. Phys. 86 (1982) 449 [INSPIRE].
  35. [35]
    E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].
  36. [36]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].
  37. [37]
    A.M. Polyakov, de Sitter space and eternity, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899] [INSPIRE].
  38. [38]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  39. [39]
    M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [INSPIRE].
  40. [40]
    M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].
  41. [41]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Avalon Publishing, (1995).Google Scholar
  42. [42]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, (2007).Google Scholar
  43. [43]
    S.A. Yost, Supermatrix models, Int. J. Mod. Phys. A 7 (1992) 6105 [hep-th/9111033] [INSPIRE].
  44. [44]
    L. Álvarez-Gaumé and J.L. Manes, Supermatrix models, Mod. Phys. Lett. A 6 (1991) 2039 [INSPIRE].
  45. [45]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].
  47. [47]
    V. Mikhaylov and E. Witten, Branes And Supergroups, Commun. Math. Phys. 340 (2015) 699 [arXiv:1410.1175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].
  49. [49]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4 − D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].
  50. [50]
    N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N = 2 quiver gauge theories, arXiv:1211.2240 [INSPIRE].
  51. [51]
    W. Craig and S. Weinstein, On determinism and well-posedness in multiple time dimensions, Proc. Roy. Soc. Lond. A 465 (2009) 3023 [arXiv:0812.0210].
  52. [52]
    S. Weinstein, Multiple Time Dimensions, arXiv:0812.3869 [INSPIRE].
  53. [53]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    R.S. Kraußhar, Generalized analytic automorphic forms for some arithmetic congruence subgroups of the vahlen group on the n-dimensional hyperbolic space, Bull. Belg. Math. Soc. Simon Stevin 11 (2005) 759.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Robbert Dijkgraaf
    • 1
  • Ben Heidenreich
    • 2
    • 3
  • Patrick Jefferson
    • 2
  • Cumrun Vafa
    • 2
  1. 1.Institute for Advanced StudyPrincetonU.S.A.
  2. 2.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations