Advertisement

Journal of High Energy Physics

, 2018:37 | Cite as

Five-dimensional fermionic Chern-Simons theory

  • Dongsu Bak
  • Andreas Gustavsson
Open Access
Regular Article - Theoretical Physics
  • 47 Downloads

Abstract

We study 5d fermionic CS theory with a fermionic 2-form gauge potential. This theory can be obtained from 5d maximally supersymmetric YM theory by performing the maximal topological twist. We put the theory on a five-manifold and compute the partition function. We find that it is a topological quantity, which involves the Ray-Singer torsion of the five-manifold. For abelian gauge group we consider the uplift to the 6d theory and find a mismatch between the 5d partition function and the 6d index, due to the nontrivial dimensional reduction of a selfdual two-form gauge field on a circle. We also discuss an application of the 5d theory to generalized knots made of 2d sheets embedded in 5d.

Keywords

BRST Quantization Field Theories in Higher Dimensions Supersymmetric Gauge Theory Topological Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    C. Beasley and E. Witten, Non-Abelian localization for Chern-Simons theory, J. Diff. Geom. 70 (2005) 183 [hep-th/0503126] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Blau and G. Thompson, Chern-Simons theory on S1-bundles: Abelianisation and q-deformed Yang-Mills theory, JHEP 05 (2006) 003 [hep-th/0601068] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    D.S. Freed and R.E. Gompf, Computer calculation of Witten’s three manifold invariant, Commun. Math. Phys. 141 (1991) 79 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    L. Rozansky, A large k asymptotics of Witten’s invariant of Seifert manifolds, Commun. Math. Phys. 171 (1995) 279 [hep-th/9303099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    D.H. Adams and S. Sen, Partition function of a quadratic functional and semiclassical approximation for Witten’s three manifold invariant, hep-th/9503095 [INSPIRE].
  10. [10]
    D.H. Adams and S. Sen, Phase and scaling properties of determinants arising in topological field theories, Phys. Lett. B 353 (1995) 495 [hep-th/9506079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D.H. Adams, A Note on the Faddeev-Popov determinant and Chern-Simons perturbation theory, Lett. Math. Phys. 42 (1997) 205 [hep-th/9704159] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D.H. Adams, The semiclassical approximation for the Chern-Simons partition function, Phys. Lett. B 417 (1998) 53 [hep-th/9709147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Blau and G. Thompson, Topological Gauge Theories of Antisymmetric Tensor Fields, Annals Phys. 205 (1991) 130 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D. Bak and A. Gustavsson, The geometric Langlands twist in five and six dimensions, JHEP 07 (2015) 013 [arXiv:1504.00099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J-H. Park and N. Nekrasov, private notes.Google Scholar
  16. [16]
    A.S. Schwarz, The Partition Function of Degenerate Quadratic Functional and Ray-Singer Invariants, Lett. Math. Phys. 2 (1978) 247 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. Blau and G. Thompson, Do metric independent classical actions lead to topological field theories?, Phys. Lett. B 255 (1991) 535 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D.B Ray, Reidemeister torsion and the laplacian on lens spaces, Adv. Math. 4 (1970) 109.Google Scholar
  19. [19]
    C. Nash and D.J. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function, J. Math. Phys. 36 (1995) 1462 [Erratum ibid. 36 (1995) 4549] [hep-th/9212022] [INSPIRE].
  20. [20]
    T. Friedmann and E. Witten, Unification scale, proton decay and manifolds of G 2 holonomy, Adv. Theor. Math. Phys. 7 (2003) 577 [hep-th/0211269] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
  22. [22]
    P. Mnev, Lecture notes on torsions, arXiv:1406.3705 [INSPIRE].
  23. [23]
    Y. Imamura, H. Matsuno and D. Yokoyama, Factorization of the \( {S}^3/{\mathrm{\mathbb{Z}}}_n \) partition function, Phys. Rev. D 89 (2014) 085003 [arXiv:1311.2371] [INSPIRE].
  24. [24]
    P.A. Kirk and E.P. Klassen, Chern-Simons invariants of 3-manifolds and representation spaces of knot groups, Math. Ann. 287 (1990) 343, http://eudml.org/doc/164690.
  25. [25]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].MATHGoogle Scholar
  28. [28]
    J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    E. Guadagnini and F. Thuillier, Path-integral invariants in abelian Chern-Simons theory, Nucl. Phys. B 882 (2014) 450 [arXiv:1402.3140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    W. Siegel, Hidden Ghosts, Phys. Lett. B 93 (1980) 170.ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Kimura, Quantum Theory of Antisymmetric Higher Rank Tensor Gauge Field in Higher Dimensional Space-time, Prog. Theor. Phys. 65 (1981) 338 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSMATHGoogle Scholar
  33. [33]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D. Bak and A. Gustavsson, Witten indices of abelian M5 brane on \( \mathrm{\mathbb{R}}\times {S}^5 \), JHEP 11 (2016) 177 [arXiv:1610.06255] [INSPIRE].
  35. [35]
    S. Rosenberg, The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds, Cambridge University Press, Cambridge U.K. (1997).CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of SeoulSeoulSouth Korea
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations