Advertisement

Journal of High Energy Physics

, 2018:36 | Cite as

Nonassociative differential geometry and gravity with non-geometric fluxes

  • Paolo Aschieri
  • Marija Dimitrijević Ćirić
  • Richard J. Szabo
Open Access
Regular Article - Theoretical Physics

Abstract

We systematically develop the metric aspects of nonassociative differential geometry tailored to the parabolic phase space model of constant locally non-geometric closed string vacua, and use it to construct preliminary steps towards a nonassociative theory of gravity on spacetime. We obtain explicit expressions for the torsion, curvature, Ricci tensor and Levi-Civita connection in nonassociative Riemannian geometry on phase space, and write down Einstein field equations. We apply this formalism to construct R-flux corrections to the Ricci tensor on spacetime, and comment on the potential implications of these structures in non-geometric string theory and double field theory.

Keywords

Non-Commutative Geometry Flux compactifications Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].
  2. [2]
    P. Aschieri, Noncommutative Riemannian geometry and gravity, in preparation.Google Scholar
  3. [3]
    P. Aschieri and L. Castellani, Noncommutative gravity solutions, J. Geom. Phys. 60 (2010) 375 [arXiv:0906.2774] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. Aschieri and A. Schenkel, Noncommutative connections on bimodules and Drinfeld twist deformation, Adv. Theor. Math. Phys. 18 (2014) 513 [arXiv:1210.0241] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    P. Aschieri and R.J. Szabo, Triproducts, nonassociative star products and geometry of R-flux string compactifications, J. Phys. Conf. Ser. 634 (2015) 012004 [arXiv:1504.03915] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity, Class. Quant. Grav. 23 (2006) 1883 [hep-th/0510059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp and J. Wess, A Gravity theory on noncommutative spaces, Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    I. Bakas and D. Lüst, 3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua, JHEP 01 (2014) 171 [arXiv:1309.3172] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. Bakas and D. Lüst, T-duality, quotients and currents for non-geometric closed strings, Fortsch. Phys. 63 (2015) 543 [arXiv:1505.04004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    G.E. Barnes, A. Schenkel and R.J. Szabo, Nonassociative geometry in quasi-Hopf representation categories I: Bimodules and their internal homomorphisms, J. Geom. Phys. 89 (2014) 111 [arXiv:1409.6331] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    G.E. Barnes, A. Schenkel and R.J. Szabo, Nonassociative geometry in quasi-Hopf representation categories II: Connections and curvature, J. Geom. Phys. 106 (2016) 234 [arXiv:1507.02792] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    G.E. Barnes, A. Schenkel and R.J. Szabo, Working with nonassociative geometry and field theory, PoS(CORFU2015)081 [arXiv:1601.07353] [INSPIRE].
  13. [13]
    C.D.A. Blair, Non-commutativity and non-associativity of the doubled string in non-geometric backgrounds, JHEP 06 (2015) 091 [arXiv:1405.2283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Blumenhagen and M. Fuchs, Towards a theory of nonassociative gravity, JHEP 07 (2016) 019 [arXiv:1604.03253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  17. [17]
    R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative deformations of geometry in double field theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Bojowald, S. Brahma, U.Büyükçam and T. Strobl, Monopole star products are non-alternative, JHEP 04 (2017) 028 [arXiv:1610.08359] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    C. Condeescu, I. Florakis and D. Lüst, Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V.G. Drinfeld, Quasi-Hopf algebras, Alg. Anal. 1N6 (1989) 114.Google Scholar
  21. [21]
    L. Freidel, R.G. Leigh and D. Minic, Born reciprocity in string theory and the nature of spacetime, Phys. Lett. B 730 (2014) 302 [arXiv:1307.7080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C. Kassel, Quantum Groups, Springer, New York U.S.A. (1995).CrossRefMATHGoogle Scholar
  23. [23]
    V.G. Kupriyanov and R.J. Szabo, G 2 -structures and quantization of non-geometric M-theory backgrounds, JHEP 02 (2017) 099 [arXiv:1701.02574] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V.G. Kupriyanov and D.V. Vassilevich, Nonassociative Weyl star products, JHEP 09 (2015) 103 [arXiv:1506.02329] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].CrossRefMATHGoogle Scholar
  26. [26]
    D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Mylonas, P. Schupp and R.J. Szabo, Non-geometric fluxes, quasi-Hopf twist deformations and nonassociative quantum mechanics, J. Math. Phys. 55 (2014) 122301 [arXiv:1312.1621] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    R.D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, New York U.S.A. (1995).MATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte OrientaleAlessandriaItaly
  2. 2.INFN, Sezione di TorinoTorinoItaly
  3. 3.Arnold-Regge CenterTorinoItaly
  4. 4.Faculty of PhysicsUniversity of BelgradeBeogradSerbia
  5. 5.Department of MathematicsHeriot-Watt UniversityEdinburghU.K.
  6. 6.Maxwell Institute for Mathematical SciencesEdinburghU.K.
  7. 7.The Higgs Centre for Theoretical PhysicsEdinburghU.K.

Personalised recommendations