Journal of High Energy Physics

, 2018:33 | Cite as

Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

  • Harold C. Steinacker
Open Access
Regular Article - Theoretical Physics


We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean “before” the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.


M(atrix) Theories Non-Commutative Geometry Spacetime Singularities 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    I. Chepelev and A.A. Tseytlin, Interactions of type IIB D-branes from D instanton matrix model, Nucl. Phys. B 511 (1998) 629 [hep-th/9705120] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M.R. Douglas and W. Taylor, Branes in the bulk of Anti-de Sitter space, hep-th/9807225 [INSPIRE].
  4. [4]
    H.C. Steinacker, String states, loops and effective actions in noncommutative field theory and matrix models, Nucl. Phys. B 910 (2016) 346 [arXiv:1606.00646] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Y. Kinar, G. Lifschytz and J. Sonnenschein, UV/IR connection: A Matrix perspective, JHEP 08 (2001) 001 [hep-th/0105089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    H.C. Steinacker, Emergent gravity on covariant quantum spaces in the IKKT model, JHEP 12 (2016) 156 [arXiv:1606.00769] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D. Jurman and H. Steinacker, 2D fuzzy Anti-de Sitter space from matrix models, JHEP 01 (2014) 100 [arXiv:1309.1598] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Chaney, L. Lu and A. Stern, Matrix model approach to cosmology, Phys. Rev. D 93 (2016) 064074 [arXiv:1511.06816] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    H. Steinacker, Split noncommutativity and compactified brane solutions in matrix models, Prog. Theor. Phys. 126 (2011) 613 [arXiv:1106.6153] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in the IIB matrix model, JHEP 10 (2012) 147 [arXiv:1208.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3 + 1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9 + 1)-dimensions, Phys. Rev. Lett. 108 (2012) 011601 [arXiv:1108.1540] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding universe as a classical solution in the Lorentzian matrix model for nonperturbative superstring theory, Phys. Rev. D 86 (2012) 027901 [arXiv:1110.4803] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Chaney, L. Lu and A. Stern, Lorentzian fuzzy spheres, Phys. Rev. D 92 (2015) 064021 [arXiv:1506.03505] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    A. Chaney and A. Stern, Fuzzy CP 2 spacetimes, Phys. Rev. D 95 (2017) 046001 [arXiv:1612.01964] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Vilenkin, Creation of universes from nothing, Phys. Lett. B 117 (1982) 25.ADSCrossRefGoogle Scholar
  21. [21]
    M. Hanada and H. Shimada, On the continuity of the commutative limit of the 4d N = 4 non-commutative super Yang-Mills theory, Nucl. Phys. B 892 (2015) 449 [arXiv:1410.4503] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    H. Grosse, C. Klimčík and P. Prešnajder, On finite 4D quantum field theory in noncommutative geometry, Commun. Math. Phys. 180 (1996) 429 [hep-th/9602115] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    J. Castelino, S. Lee and W. Taylor, Longitudinal five-branes as four spheres in matrix theory, Nucl. Phys. B 526 (1998) 334 [hep-th/9712105] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys. B 610 (2001) 461 [hep-th/0105006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    P.-M. Ho and S. Ramgoolam, Higher dimensional geometries from matrix brane constructions, Nucl. Phys. B 627 (2002) 266 [hep-th/0111278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Y. Kimura, Noncommutative gauge theory on fuzzy four sphere and matrix model, Nucl. Phys. B 637 (2002) 177 [hep-th/0204256] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. Medina and D. O’Connor, Scalar field theory on fuzzy S 4, JHEP 11 (2003) 051 [hep-th/0212170] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Sperling and H.C. Steinacker, Covariant 4-dimensional fuzzy spheres, matrix models and higher spin, J. Phys. A 50 (2017) 375202 [arXiv:1704.02863] [INSPIRE].MathSciNetMATHGoogle Scholar
  29. [29]
    H.C. Steinacker, One-loop stabilization of the fuzzy four-sphere via softly broken SUSY, JHEP 12 (2015) 115 [arXiv:1510.05779] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    H. Steinacker, Non-commutative geometry and matrix models, PoS(QGQGS 2011)004 [arXiv:1109.5521] [INSPIRE].
  31. [31]
    T. Azuma, S. Bal, K. Nagao and J. Nishimura, Absence of a fuzzy S 4 phase in the dimensionally reduced 5D Yang-Mills-Chern-Simons model, JHEP 07 (2004) 066 [hep-th/0405096] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Hasebe, Non-compact Hopf maps and fuzzy ultra-hyperboloids, Nucl. Phys. B 865 (2012) 148 [arXiv:1207.1968] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    H. Grosse, P. Prešnajder and Z. Wang, Quantum field theory on quantized Bergman domain, J. Math. Phys. 53 (2012) 013508 [arXiv:1005.5723] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Günaydin, D. Minic and M. Zagermann, 4D doubleton conformal theories, CPT and IIB string on AdS 5 × S 5, Nucl. Phys. B 534 (1998) 96 [Erratum ibid. B 538 (1999) 531] [hep-th/9806042] [INSPIRE].
  36. [36]
    G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    G. Mack and I. Todorov, Irreducibility of the ladder representations of u(2, 2) when restricted to the Poincaré subgroup, J. Math. Phys. 10 (1969) 2078 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    W. Heidenreich, Tensor products of positive energy representations of SO(3, 2) and SO(4, 2), J. Math. Phys. 22 (1981) 1566 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    M. Burić, D. Latas and L. Nenadovic, Fuzzy de Sitter space, arXiv:1709.05158 [INSPIRE].
  40. [40]
    M. Burić and J. Madore, Noncommutative de Sitter and FRW spaces, Eur. Phys. J. C 75 (2015) 502 [arXiv:1508.06058] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J.-P. Gazeau, J. Mourad and J. Queva, Fuzzy de Sitter space-times via coherent states quantization, quant-ph/0610222 [INSPIRE].
  42. [42]
    J.-P. Gazeau and F. Toppan, A natural fuzzyness of de Sitter space-time, Class. Quant. Grav. 27 (2010) 025004 [arXiv:0907.0021] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    J. Heckman and H. Verlinde, Covariant non-commutative space-time, Nucl. Phys. B 894 (2015) 58 [arXiv:1401.1810] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    D. Klammer and H. Steinacker, Cosmological solutions of emergent noncommutative gravity, Phys. Rev. Lett. 102 (2009) 221301 [arXiv:0903.0986] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Sperling and H.C. Steinacker, Higher spin gauge theory on fuzzy S N4, J. Phys. A 51 (2018)075201 [arXiv:1707.00885] [INSPIRE].
  46. [46]
    A.H. Chamseddine, A. Connes and V. Mukhanov, Quanta of geometry: noncommutative aspects, Phys. Rev. Lett. 114 (2015) 091302 [arXiv:1409.2471] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations