Journal of High Energy Physics

, 2018:28 | Cite as

Universal RCFT correlators from the holomorphic bootstrap

  • Sunil Mukhi
  • Girish Muralidhara
Open Access
Regular Article - Theoretical Physics


We elaborate and extend the method of Wronskian differential equations for conformal blocks to compute four-point correlation functions on the plane for classes of primary fields in rational (and possibly more general) conformal field theories. This approach leads to universal differential equations for families of CFT’s and provides a very simple re-derivation of the BPZ results for the degenerate fields ϕ1,2 and ϕ2,1 in the c < 1 minimal models. We apply this technique to compute correlators for the WZW models corresponding to the Deligne-Cvitanović exceptional series of Lie algebras. The application turns out to be subtle in certain cases where there are multiple decoupled primaries. The power of this approach is demonstrated by applying it to compute four-point functions for the Baby Monster CFT, which does not belong to any minimal series.


Conformal and W Symmetry Conformal Field Theory Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York U.S.A. (1997).Google Scholar
  3. [3]
    H.R. Hampapura and S. Mukhi, On 2d Conformal Field Theories with Two Characters, JHEP 01 (2016) 005 [arXiv:1510.04478] [INSPIRE].
  4. [4]
    M.R. Gaberdiel, H.R. Hampapura and S. Mukhi, Cosets of Meromorphic CFTs and Modular Differential Equations, JHEP 04 (2016) 156 [arXiv:1602.01022] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H.R. Hampapura and S. Mukhi, Two-dimensional RCFT’s without Kac-Moody symmetry, JHEP 07 (2016) 138 [arXiv:1605.03314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A.N. Schellekens, Meromorphic C = 24 conformal field theories, Commun. Math. Phys. 153 (1993) 159 [hep-th/9205072] [INSPIRE].
  7. [7]
    S.D. Mathur, S. Mukhi and A. Sen, On the Classification of Rational Conformal Field Theories, Phys. Lett. B 213 (1988) 303 [INSPIRE].
  8. [8]
    S.D. Mathur, S. Mukhi and A. Sen, Differential Equations for Correlators and Characters in Arbitrary Rational Conformal Field Theories, Nucl. Phys. B 312 (1989) 15 [INSPIRE].
  9. [9]
    S.D. Mathur, S. Mukhi and A. Sen, Reconstruction of Conformal Field Theories From Modular Geometry on the Torus, Nucl. Phys. B 318 (1989) 483 [INSPIRE].
  10. [10]
    G. Anderson and G.W. Moore, Rationality in Conformal Field Theory, Commun. Math. Phys. 117 (1988) 441 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. Eguchi and H. Ooguri, Differential Equations for Characters of Virasoro and Affine Lie Algebras, Nucl. Phys. B 313 (1989) 492 [INSPIRE].
  12. [12]
    E.P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].
  13. [13]
    S.G. Naculich, Differential equations for rational conformal characters, Nucl. Phys. B 323 (1989) 423 [INSPIRE].
  14. [14]
    P. Bantay, Modular differential equations for characters of RCFT, JHEP 06 (2010) 021 [arXiv:1004.2579] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    V.G. Knizhnik and A.B. Zamolodchikov, Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].
  16. [16]
    C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular differential equations, arXiv:1707.07679 [INSPIRE].
  17. [17]
    J. Fuchs, Operator Algebra From Fusion Rules: The Infinite Number of Ising Theories, Nucl. Phys. B 328 (1989) 585 [INSPIRE].
  18. [18]
    G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster (Self-dual Vertex Operator Super Algebras and the Baby Monster), arXiv:0706.0236.
  19. [19]
    G. Hoehn, Generalized Moonshine for the Baby Monster, (2003).
  20. [20]
    J. Fuchs, Operator algebra from fusion rules. 2. Implementing apparent singularities, Nucl. Phys. B 386 (1992) 343 [INSPIRE].
  21. [21]
    P. Deligne, La série exceptionnelle des groupes de Lie, C. R. Acad. Sci. 322 (1996) 321.Google Scholar
  22. [22]
    P. Deligne and R. de Man, La série exceptionnelle des groupes de Lie II, C. R. Acad. Sci. 323 (1996) 577.Google Scholar
  23. [23]
    J.M. Landsberg and L. Manivel, The Sextonions and \( {E}_{7\frac{1}{2}} \), math/0402157.Google Scholar
  24. [24]
    R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie algebras and representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].
  25. [25]
    S.D. Mathur, S. Mukhi and A. Sen, Correlators of Primary Fields in the SU(2) W ZW Theory on Riemann Surfaces, Nucl. Phys. B 305 (1988) 219 [INSPIRE].
  26. [26]
    S.D. Mathur and S. Mukhi, Correlation Functions of Current Algebra Theories on the Torus, Phys. Lett. B 210 (1988) 133 [INSPIRE].
  27. [27]
    L. Dolan and P. Goddard, Current Algebra on the Torus, Commun. Math. Phys. 285 (2009) 219 [arXiv:0710.3743] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M.R. Gaberdiel and S. Lang, Modular differential equations for torus one-point functions, J. Phys. A 42 (2009) 045405 [arXiv:0810.0106] [INSPIRE].
  29. [29]
    M. Flohr and M.R. Gaberdiel, Logarithmic torus amplitudes, J. Phys. A 39 (2006) 1955 [hep-th/0509075] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPuneIndia
  2. 2.International Centre for Theoretical SciencesBengaluruIndia

Personalised recommendations