Advertisement

Journal of High Energy Physics

, 2018:26 | Cite as

Massive charged-current coefficient functions in deep-inelastic scattering at NNLO and impact on strange-quark distributions

Open Access
Regular Article - Theoretical Physics
  • 125 Downloads

Abstract

We present details on calculation of next-to-next-to-leading order QCD corrections to massive charged-current coefficient functions in deep-inelastic scattering. Especially we focus on the application to charm-quark production in neutrino scattering on fixed target that can be measured via the dimuon final state. We construct a fast interface to the calculation so for any parton distributions the cross sections can be evaluated within milliseconds by using the pre-generated interpolation grids. We discuss agreements of various theoretical predictions with the NuTeV and CCFR dimuon data and the impact of the results on determination of the strange-quark distributions.

Keywords

Deep Inelastic Scattering (Phenomenology) NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ZEUS and H1 collaborations, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].
  2. [2]
    J. Gao, L. Harland-Lang and J. Rojo, The Structure of the Proton in the LHC Precision Era, arXiv:1709.04922 [INSPIRE].
  3. [3]
    E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Complete O (α s ) corrections to heavy flavor structure functions in electroproduction, Nucl. Phys. B 392 (1993) 162 [INSPIRE].
  4. [4]
    E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, O(α s ) corrections to heavy flavor inclusive distributions in electroproduction, Nucl. Phys. B 392 (1993) 229 [INSPIRE].
  5. [5]
    T. Gottschalk, Chromodynamic Corrections to Neutrino Production of Heavy Quarks, Phys. Rev. D 23 (1981) 56 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Gluck, S. Kretzer and E. Reya, Detailed next-to-leading order analysis of deep inelastic neutrino induced charm production off strange sea partons, Phys. Lett. B 398 (1997) 381 [Erratum ibid. B 405 (1997) 392] [hep-ph/9701364] [INSPIRE].
  7. [7]
    J. Blumlein, A. Hasselhuhn, P. Kovacikova and S. Moch, O(α s) Heavy Flavor Corrections to Charged Current Deep-Inelastic Scattering in Mellin Space, Phys. Lett. B 700 (2011) 294 [arXiv:1104.3449] [INSPIRE].
  8. [8]
    S. Alekhin et al., Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data, Phys. Rev. D 91 (2015) 094002 [arXiv:1404.6469] [INSPIRE].
  9. [9]
    E.L. Berger, J. Gao, C.S. Li, Z.L. Liu and H.X. Zhu, Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 116 (2016) 212002 [arXiv:1601.05430] [INSPIRE].
  10. [10]
    A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel and C. Schneider, O(α s3) heavy flavor contributions to the charged current structure function xF 3(x, Q 2) at large momentum transfer, Phys. Rev. D 92 (2015) 114005 [arXiv:1508.01449] [INSPIRE].
  11. [11]
    NuTeV collaboration, M. Goncharov et al., Precise measurement of dimuon production cross-sections in muon neutrino Fe and muon anti-neutrino Fe deep inelastic scattering at the Tevatron, Phys. Rev. D 64 (2001) 112006 [hep-ex/0102049] [INSPIRE].
  12. [12]
    D.A. Mason, Measurement of the strange — antistrange asymmetry at NLO in QCD from NuTeV dimuon data, Ph.D. Thesis, University of Oregon, Eugene U.S.A. (2006).Google Scholar
  13. [13]
    CHORUS collaboration, A. Kayis-Topaksu et al., Leading order analysis of neutrino induced dimuon events in the CHORUS experiment, Nucl. Phys. B 798 (2008) 1 [arXiv:0804.1869] [INSPIRE].
  14. [14]
    NOMAD collaboration, O. Samoylov et al., A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment, Nucl. Phys. B 876 (2013) 339 [arXiv:1308.4750] [INSPIRE].
  15. [15]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
  16. [16]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].
  17. [17]
    NNPDF collaboration, R.D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  18. [18]
    F. Carvalho, F.O. Duraes, F.S. Navarra, M. Nielsen and F.M. Steffens, Meson cloud and SU(3) symmetry breaking in parton distributions, Eur. Phys. J. C 18 (2000) 127 [hep-ph/9912378] [INSPIRE].
  19. [19]
    R. Vogt, Physics of the nucleon sea quark distributions, Prog. Part. Nucl. Phys. 45 (2000) S105 [hep-ph/0011298] [INSPIRE].
  20. [20]
    H. Chen, F.G. Cao and A.I. Signal, Strange sea distributions of the nucleon, J. Phys. G 37 (2010) 105006 [arXiv:0912.0351] [INSPIRE].
  21. [21]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].
  22. [22]
    A. Kusina et al., Strange Quark PDFs and Implications for Drell-Yan Boson Production at the LHC, Phys. Rev. D 85 (2012) 094028 [arXiv:1203.1290] [INSPIRE].
  23. [23]
    M.W. Krasny, F. Dydak, F. Fayette, W. Placzek and A. Siodmok, ΔM W ≤ 10 M eV /c 2 at the LHC: a forlorn hope?, Eur. Phys. J. C 69 (2010) 379 [arXiv:1004.2597] [INSPIRE].
  24. [24]
    G. Bozzi, J. Rojo and A. Vicini, The Impact of PDF uncertainties on the measurement of the W boson mass at the Tevatron and the LHC, Phys. Rev. D 83 (2011) 113008 [arXiv:1104.2056] [INSPIRE].
  25. [25]
    M. Baak et al., Working Group Report: Precision Study of Electroweak Interactions, arXiv:1310.6708 [INSPIRE].
  26. [26]
    ATLAS collaboration, Precision measurement and interpretation of inclusive W + , W and Z/γ production cross sections with the ATLAS detector, Eur. Phys. J. C 77 (2017) 367 [arXiv:1612.03016] [INSPIRE].
  27. [27]
    ATLAS collaboration, Determination of the strange quark density of the proton from ATLAS measurements of the Wℓν and Zℓℓ cross sections, Phys. Rev. Lett. 109 (2012) 012001 [arXiv:1203.4051] [INSPIRE].
  28. [28]
    S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, α s and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].
  29. [29]
    S. Alekhin, J. Blümlein and S. Moch, Strange sea determination from collider data, Phys. Lett. B 777 (2018) 134 [arXiv:1708.01067] [INSPIRE].
  30. [30]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  31. [31]
    J. Gao, C.S. Li and H.X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].
  32. [32]
    J. Gao and H.X. Zhu, Electroweak prodution of top-quark pairs in e + e annihilation at NNLO in QCD: the vector contributions, Phys. Rev. D 90 (2014) 114022 [arXiv:1408.5150] [INSPIRE].
  33. [33]
    J. Gao and H.X. Zhu, Top Quark Forward-Backward Asymmetry in e + e Annihilation at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 113 (2014) 262001 [arXiv:1410.3165] [INSPIRE].
  34. [34]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].
  35. [35]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].
  37. [37]
    H.T. Li and J. Wang, Fully Differential Higgs Pair Production in Association With a W Boson at Next-to-Next-to-Leading Order in QCD, Phys. Lett. B 765 (2017) 265 [arXiv:1607.06382] [INSPIRE].
  38. [38]
    E.L. Berger, J. Gao and H.X. Zhu, Differential Distributions for t-channel Single Top-Quark Production and Decay at Next-to-Next-to-Leading Order in QCD, JHEP 11 (2017) 158 [arXiv:1708.09405] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    H.T. Li, C.S. Li and J. Wang, Fully Differential Higgs Pair Production in Association With a Z Boson at Next-to-Next-to-Leading Order in QCD, arXiv:1710.02464 [INSPIRE].
  40. [40]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  41. [41]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  42. [42]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  43. [43]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
  44. [44]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].
  45. [45]
    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].
  46. [46]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].
  47. [47]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].
  48. [48]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
  49. [49]
    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trócsányi, Higgs boson decay into b-quarks at NNLO accuracy, JHEP 04 (2015) 036 [arXiv:1501.07226] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 115 (2015) 082002 [arXiv:1506.02660] [INSPIRE].
  52. [52]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
  53. [53]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].
  54. [54]
    R. Bonciani and A. Ferroglia, Two-Loop QCD Corrections to the Heavy-to-Light Quark Decay, JHEP 11 (2008) 065 [arXiv:0809.4687] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    H.M. Asatrian, C. Greub and B.D. Pecjak, NNLO corrections to \( \overline{B}\to {X}_ul\overline{\nu} \) in the shape-function region, Phys. Rev. D 78 (2008) 114028 [arXiv:0810.0987] [INSPIRE].
  56. [56]
    M. Beneke, T. Huber and X.Q. Li, Two-loop QCD correction to differential semi-leptonic bu decays in the shape-function region, Nucl. Phys. B 811 (2009) 77 [arXiv:0810.1230] [INSPIRE].
  57. [57]
    G. Bell, NNLO corrections to inclusive semileptonic B decays in the shape-function region, Nucl. Phys. B 812 (2009) 264 [arXiv:0810.5695] [INSPIRE].
  58. [58]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy: I. Two-loop result for the soft function, Phys. Lett. B 633 (2006) 739 [hep-ph/0512208] [INSPIRE].
  59. [59]
    J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The Quark Beam Function at Two Loops, JHEP 04 (2014) 113 [arXiv:1401.5478] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, Subleading Power Corrections for N-Jettiness Subtractions, Phys. Rev. D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].
  61. [61]
    R. Boughezal, X. Liu and F. Petriello, Power Corrections in the N-jettiness Subtraction Scheme, JHEP 03 (2017) 160 [arXiv:1612.02911] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  62. [62]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  63. [63]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  64. [64]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].
  65. [65]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11 (1992).Google Scholar
  66. [66]
    G. Cullen et al., GOSAM-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  67. [67]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  68. [68]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  69. [69]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  70. [70]
    M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett. B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE].
  71. [71]
    H. Georgi and H.D. Politzer, Precocious Scaling, Rescaling and xi Scaling, Phys. Rev. Lett. 36 (1976) 1281 [Erratum ibid. 37 (1976) 68] [INSPIRE].
  72. [72]
    M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].
  73. [73]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].
  74. [74]
    R.S. Thorne, Effect of changes of variable flavor number scheme on parton distribution functions and predicted cross sections, Phys. Rev. D 86 (2012) 074017 [arXiv:1201.6180] [INSPIRE].
  75. [75]
    M. Guzzi, P.M. Nadolsky, H.-L. Lai and C.P. Yuan, General-Mass Treatment for Deep Inelastic Scattering at Two-Loop Accuracy, Phys. Rev. D 86 (2012) 053005 [arXiv:1108.5112] [INSPIRE].
  76. [76]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  77. [77]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
  78. [78]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].
  79. [79]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
  80. [80]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].
  81. [81]
    fastNLO collaboration, M. Wobisch, D. Britzger, T. Kluge, K. Rabbertz and F. Stober, Theory-Data Comparisons for Jet Measurements in Hadron-Induced Processes, arXiv:1109.1310 [INSPIRE].
  82. [82]
    V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: automation of fast NLO computations for PDF fits, JHEP 08 (2014) 166 [arXiv:1406.7693] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].
  84. [84]
    F. Olness et al., Neutrino dimuon production and the strangeness asymmetry of the nucleon, Eur. Phys. J. C 40 (2005) 145 [hep-ph/0312323] [INSPIRE].
  85. [85]
    M. Hirai, S. Kumano and T.H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order, Phys. Rev. C 76 (2007) 065207 [arXiv:0709.3038] [INSPIRE].
  86. [86]
    K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Global Analysis of Nuclear Parton Distributions, Phys. Rev. D 85 (2012) 074028 [arXiv:1112.6324] [INSPIRE].
  88. [88]
    K. Kovarik et al., nCTEQ15 — Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93 (2016) 085037 [arXiv:1509.00792] [INSPIRE].
  89. [89]
    HERAFitter developers’ Team collaboration, S. Camarda et al., QCD analysis of W - and Z-boson production at Tevatron, Eur. Phys. J. C 75 (2015) 458 [arXiv:1503.05221] [INSPIRE].
  90. [90]
    S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, α s and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].
  91. [91]
    S. Carrazza, S. Forte, Z. Kassabov, J.I. Latorre and J. Rojo, An Unbiased Hessian Representation for Monte Carlo PDFs, Eur. Phys. J. C 75 (2015) 369 [arXiv:1505.06736] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and AstronomyShanghai Jiao-Tong UniversityShanghaiChina

Personalised recommendations