Advertisement

Journal of High Energy Physics

, 2018:20 | Cite as

Quantization of anomaly coefficients in 6D \( \mathcal{N}=\left(1,\;0\right) \) supergravity

  • Samuel Monnier
  • Gregory W. Moore
  • Daniel S. Park
Open Access
Regular Article - Theoretical Physics

Abstract

We obtain new constraints on the anomaly coefficients of 6D \( \mathcal{N}=\left(1,0\right) \) supergravity theories using local and global anomaly cancellation conditions. We show how these constraints can be strengthened if we assume that the theory is well-defined on any spin space-time with an arbitrary gauge bundle. We distinguish the constraints depending on the gauge algebra only from those depending on the global structure of the gauge group. Our main constraint states that the coefficients of the anomaly polynomial for the gauge group G should be an element of 2H4(BG; ) ⊗ Λ S where Λ S is the unimodular string charge lattice. We show that the constraints in their strongest form are realized in F-theory compactifications. In the process, we identify the cocharacter lattice, which determines the global structure of the gauge group, within the homology lattice of the compactification manifold.

Keywords

F-Theory Supergravity Models Superstring Vacua Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].
  2. [2]
    M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. 149B (1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic String Theory. 1. The Free Heterotic String, Nucl. Phys. B 256 (1985) 253 [INSPIRE].
  4. [4]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic String Theory. 2. The Interacting Heterotic String, Nucl. Phys. B 267 (1986) 75 [INSPIRE].
  5. [5]
    N. Seiberg, Observations on the Moduli Space of Superconformal Field Theories, Nucl. Phys. B 303 (1988) 286 [INSPIRE].
  6. [6]
    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].
  7. [7]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  8. [8]
    A. Adams, O. DeWolfe and W. Taylor, String universality in ten dimensions, Phys. Rev. Lett. 105 (2010) 071601 [arXiv:1006.1352] [INSPIRE].
  9. [9]
    V. Kumar and W. Taylor, String Universality in Six Dimensions, Adv. Theor. Math. Phys. 15 (2011) 325 [arXiv:0906.0987] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    W. Taylor, TASI Lectures on Supergravity and String Vacua in Various Dimensions, arXiv:1104.2051 [INSPIRE].
  11. [11]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly Free Chiral Theories in Six-Dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].
  12. [12]
    A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Sadov, Generalized Green-Schwarz mechanism in F-theory, Phys. Lett. B 388 (1996) 45 [hep-th/9606008] [INSPIRE].
  14. [14]
    A. Grassi and D.R. Morrison, Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds, math/0005196 [INSPIRE].
  15. [15]
    V. Kumar and W. Taylor, A Bound on 6D N = 1 supergravities, JHEP 12 (2009) 050 [arXiv:0910.1586] [INSPIRE].
  16. [16]
    E. Witten, An SU(2) Anomaly, Phys. Lett. 117B (1982) 324 [INSPIRE].
  17. [17]
    M. Bershadsky and C. Vafa, Global anomalies and geometric engineering of critical theories in six-dimensions, hep-th/9703167 [INSPIRE].
  18. [18]
    R. Suzuki and Y. Tachikawa, More anomaly-free models of six-dimensional gauged supergravity, J. Math. Phys. 47 (2006) 062302 [hep-th/0512019] [INSPIRE].
  19. [19]
    V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].
  20. [20]
    N. Seiberg and W. Taylor, Charge Lattices and Consistency of 6D Supergravity, JHEP 06 (2011) 001 [arXiv:1103.0019] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    V. Kumar, D.S. Park and W. Taylor, 6D supergravity without tensor multiplets, JHEP 04 (2011) 080 [arXiv:1011.0726] [INSPIRE].
  22. [22]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].
  23. [23]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  24. [24]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  25. [25]
    V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory, JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].
  26. [26]
    E. Witten, Global gravitational anomalies, Commun. Math. Phys. 100 (1985) 197 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].
  28. [28]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  29. [29]
    S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE].
  31. [31]
    P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.P. Turner and W. Taylor, Anomaly constraints and u(1) charges for 6d supergravity theories, to appear.Google Scholar
  33. [33]
    N. Raghuram, Abelian F-theory Models with Charge-3 and Charge-4 Matter, arXiv:1711.03210 [INSPIRE].
  34. [34]
    I. García-Etxebarria, H. Hayashi, K. Ohmori, Y. Tachikawa and K. Yonekura, 8d gauge anomalies and the topological Green-Schwarz mechanism, JHEP 11 (2017) 177 [arXiv:1710.04218] [INSPIRE].
  35. [35]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].
  36. [36]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  37. [37]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].
  38. [38]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].
  39. [39]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].
  40. [40]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].
  41. [41]
    M. Bershadsky and A. Johansen, Colliding singularities in F-theory and phase transitions, Nucl. Phys. B 489 (1997) 122 [hep-th/9610111] [INSPIRE].
  42. [42]
    J.D. Blum and K.A. Intriligator, Consistency conditions for branes at orbifold singularities, Nucl. Phys. B 506 (1997) 223 [hep-th/9705030] [INSPIRE].
  43. [43]
    P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].
  44. [44]
    K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].
  47. [47]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  48. [48]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].
  49. [49]
    J.J. Heckman, More on the Matter of 6D SCFTs, Phys. Lett. B 747 (2015) 73 [arXiv:1408.0006] [INSPIRE].
  50. [50]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].
  51. [51]
    M. Del Zotto, J.J. Heckman, D.R. Morrison and D.S. Park, 6D SCFTs and Gravity, JHEP 06 (2015) 158 [arXiv:1412.6526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].
  54. [54]
    S. Monnier, Topological field theories on manifolds with Wu structures, Rev. Math. Phys. 29 (2017) 1750015 [arXiv:1607.01396] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    D.S. Freed, Pions and Generalized Cohomology, J. Diff. Geom. 80 (2008) 45 [hep-th/0607134] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    D.M. Belov and G.W. Moore, Type II Actions from 11-Dimensional Chern-Simons Theories, hep-th/0611020 [INSPIRE].
  57. [57]
    T. Pantev and E. Sharpe, Notes on gauging noneffective group actions, hep-th/0502027 [INSPIRE].
  58. [58]
    T. Pantev and E. Sharpe, GLSM’s for Gerbes (and other toric stacks), Adv. Theor. Math. Phys. 10 (2006) 77 [hep-th/0502053] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity, JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    D.S. Park and W. Taylor, Constraints on 6D Supergravity Theories with Abelian Gauge Symmetry, JHEP 01 (2012) 141 [arXiv:1110.5916] [INSPIRE].
  61. [61]
    S. Elitzur and V.P. Nair, Nonperturbative Anomalies in Higher Dimensions, Nucl. Phys. B 243 (1984) 205 [INSPIRE].
  62. [62]
    A. Henriques, The classification of chiral WZW models by H +4(BG), arXiv:1602.02968 [INSPIRE].
  63. [63]
    A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    D.R. Morrison and W. Taylor, Matter and singularities, JHEP 01 (2012) 022 [arXiv:1106.3563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    D. Klevers, D.R. Morrison, N. Raghuram and W. Taylor, Exotic matter on singular divisors in F-theory, JHEP 11 (2017) 124 [arXiv:1706.08194] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    O. Bär, On Witten’s global anomaly for higher SU(2) representations, Nucl. Phys. B 650 (2003) 522 [hep-lat/0209098] [INSPIRE].
  67. [67]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Springer, Heidelberg Germnany (1997).Google Scholar
  68. [68]
    R. Bott, The stable homotopy of the classical groups, Ann. Math. 70 (1959) 313.MathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    M. Mimura and H. Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ. 3 (1963/1964) 251.Google Scholar
  70. [70]
    M. Hughes, Symmetries of homotopy complex projective three spaces, Trans. Am. Math. Soc. 337 (1993) 291.MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    V. Braun and D.R. Morrison, F-theory on Genus-One Fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  73. [73]
    D.R. Morrison, D.S. Park and W. Taylor, Non-Higgsable abelian gauge symmetry and F-theory on fiber products of rational elliptic surfaces, arXiv:1610.06929 [INSPIRE].
  74. [74]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].
  75. [75]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].
  76. [76]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].
  77. [77]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].
  78. [78]
    R. Wazir, Arithmetic on elliptic threefolds, math/0112259.
  79. [79]
    D.S. Park, Anomaly Equations and Intersection Theory, JHEP 01 (2012) 093 [arXiv:1111.2351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    D.R. Morrison and D.S. Park, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990) 211.Google Scholar
  82. [82]
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York U.S.A. (1994).Google Scholar
  83. [83]
    S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].
  84. [84]
    F. Bonetti, T.W. Grimm and S. Hohenegger, Exploring 6D origins of 5D supergravities with Chern-Simons terms, JHEP 05 (2013) 124 [arXiv:1303.2661] [INSPIRE].
  85. [85]
    C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand, Mordell-Weil Torsion and the Global Structure of Gauge Groups in F-theory, JHEP 10 (2014) 16 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  86. [86]
    M. Cvetič and L. Lin, The Global Gauge Group Structure of F-theory Compactification with U(1)s, arXiv:1706.08521 [INSPIRE].
  87. [87]
    E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  88. [88]
    R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  89. [89]
    E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys. 5 (2002) 841 [hep-th/0006010] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Samuel Monnier
    • 1
  • Gregory W. Moore
    • 2
  • Daniel S. Park
    • 2
  1. 1.Section de MathématiquesUniversité de GenèveGenève 4Switzerland
  2. 2.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.

Personalised recommendations