Advertisement

Journal of High Energy Physics

, 2016:135 | Cite as

Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1) BL

  • Claudio Corianò
  • Luigi Delle Rose
  • Carlo Marzo
Open Access
Regular Article - Theoretical Physics

Abstract

We present a renormalization group study of the scalar potential in a minimal U(1) BL extension of the Standard Model involving one extra heavier Higgs and three heavy right-handed neutrinos with family universal B-L charge assignments. We implement a type-I seesaw for the masses of the light neutrinos of the Standard Model. In particular, compared to a previous study, we perform a two-loop extension of the evolution, showing that two-loop effects are essential for the study of the stability of the scalar potential up to the Planck scale. The analysis includes the contribution of the kinetic mixing between the two abelian gauge groups, which is radiatively generated by the evolution, and the one-loop matching conditions at the electroweak scale. By requiring the stability of the potential up to the Planck mass, significant constraints on the masses of the heavy neutrinos, on the gauge couplings and the mixing in the Higgs sector are identified.

Keywords

Beyond Standard Model Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    P.Q. Hung, Vacuum instability and new constraints on fermion masses, Phys. Rev. Lett. 42 (1979) 873 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    F. Bezrukov, M.Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    V. Branchina, E. Messina and A. Platania, Top mass determination, Higgs inflation and vacuum stability, JHEP 09 (2014) 182 [arXiv:1407.4112] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].ADSGoogle Scholar
  11. [11]
    L. Di Luzio, G. Isidori and G. Ridolfi, Stability of the electroweak ground state in the Standard Model and its extensions, Phys. Lett. B 753 (2016) 150 [arXiv:1509.05028] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    G.W. Anderson, New cosmological constraints on the Higgs boson and top quark masses, Phys. Lett. B 243 (1990) 265 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    P.B. Arnold and S. Vokos, Instability of hot electroweak theory: bounds on m H and M t, Phys. Rev. D 44 (1991) 3620 [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.R. Espinosa and M. Quirós, Improved metastability bounds on the standard model Higgs mass, Phys. Lett. B 353 (1995) 257 [hep-ph/9504241] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A. Kobakhidze and A. Spencer-Smith, Electroweak vacuum (in)stability in an inflationary universe, Phys. Lett. B 722 (2013) 130 [arXiv:1301.2846] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    K. Enqvist, T. Meriniemi and S. Nurmi, Generation of the Higgs condensate and its decay after inflation, JCAP 10 (2013) 057 [arXiv:1306.4511] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Fairbairn, P. Grothaus and R. Hogan, The problem with false vacuum Higgs inflation, JCAP 06 (2014) 039 [arXiv:1403.7483] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    K. Enqvist, T. Meriniemi and S. Nurmi, Higgs dynamics during inflation, JCAP 07 (2014) 025 [arXiv:1404.3699] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    A. Kobakhidze and A. Spencer-Smith, The Higgs vacuum is unstable, arXiv:1404.4709 [INSPIRE].
  22. [22]
    M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett. 113 (2014) 211102 [arXiv:1407.3141] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    K. Kamada, Inflationary cosmology and the standard model Higgs with a small Hubble induced mass, Phys. Lett. B 742 (2015) 126 [arXiv:1409.5078] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A. Shkerin and S. Sibiryakov, On stability of electroweak vacuum during inflation, Phys. Lett. B746 (2015) 257 [arXiv:1503.0258].CrossRefADSGoogle Scholar
  25. [25]
    J.R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP 09 (2015) 174 [arXiv:1505.04825] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    L. Delle Rose, C. Marzo and A. Urbano, On the fate of the standard model at finite temperature, arXiv:1507.06912 [INSPIRE].
  27. [27]
    A. Hook, J. Kearney, B. Shakya and K.M. Zurek, Probable or improbable universe? Correlating electroweak vacuum instability with the scale of inflation, JHEP 01 (2015) 061 [arXiv:1404.5953] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    J. Kearney, H. Yoo and K.M. Zurek, Is a Higgs vacuum instability fatal for high-scale inflation?, Phys. Rev. D 91 (2015) 123537 [arXiv:1503.05193] [INSPIRE].ADSGoogle Scholar
  29. [29]
    I. Masina, Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    L. Basso, S. Moretti and G.M. Pruna, Phenomenology of the minimal BL extension of the standard model: the Higgs sector, Phys. Rev. D 83 (2011) 055014 [arXiv:1011.2612] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L. Basso, S. Moretti and G.M. Pruna, A renormalisation group equation study of the scalar sector of the minimal B-L extension of the standard model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Basso, Minimal Zmodels and the 125 GeV Higgs boson, Phys. Lett. B 725 (2013) 322 [arXiv:1303.1084] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    A. Datta, A. Elsayed, S. Khalil and A. Moursy, Higgs vacuum stability in the B-L extended standard model, Phys. Rev. D 88 (2013) 053011 [arXiv:1308.0816] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Chakrabortty, P. Konar and T. Mondal, Constraining a class of B-L extended models from vacuum stability and perturbativity, Phys. Rev. D 89 (2014) 056014 [arXiv:1308.1291] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Di Chiara, V. Keus and O. Lebedev, Stabilizing the Higgs potential with a Z′, Phys. Lett. B 744 (2015) 59 [arXiv:1412.7036] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    L.A. Anchordoqui et al., Majorana dark matter through the Higgs portal under the vacuum stability lamppost, Phys. Rev. D92 (2015) 063504 [arXiv:1506.0470].ADSGoogle Scholar
  38. [38]
    S. Oda, N. Okada and D.S. Takahashi, Classically conformal U(1) extended standard model and Higgs vacuum stability, Phys. Rev. D 92 (2015) 015026 [arXiv:1504.0629].ADSGoogle Scholar
  39. [39]
    N. Haba and Y. Yamaguchi, Vacuum stability in the U(1)χ extended model with vanishing scalar potential at the Planck scale, PTEP 2015 (2015) 093B05 [arXiv:1504.05669] [INSPIRE].
  40. [40]
    C. Corianò, L. Delle Rose and C. Marzo, Vacuum stability in U(1)′ extensions of the standard model with TeV scale right handed neutrinos, Phys. Lett. B 738 (2014) 13 [arXiv:1407.8539] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    A. Das, N. Okada and N. Papapietro, Electroweak vacuum stability in classically conformal B-L extension of the Standard Model, arXiv:1509.01466 [INSPIRE].
  42. [42]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the standard model: Zand neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  43. [43]
    L. Basso, S. Moretti and G.M. Pruna, Constraining the g 1 coupling in the minimal B-L model, J. Phys. G 39 (2012) 025004 [arXiv:1009.4164] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Zdiscovery potential at the LHC in the minimal B-L extension of the Standard Model, Eur. Phys. J. C 71 (2011) 1613 [arXiv:1002.3586] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    L. Basso, S. Moretti and G.M. Pruna, Theoretical constraints on the couplings of non-exotic minimal Zbosons, JHEP 08 (2011) 122 [arXiv:1106.4762] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    L. Basso, K. Mimasu and S. Moretti, Zsignals in polarised top-antitop final states, JHEP 09 (2012) 024 [arXiv:1203.2542] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    L. Basso, K. Mimasu and S. Moretti, Non-exotic Z signals in ℓ + , \( b\overline{b} \) and \( t\overline{t} \) final states at the LHC, JHEP 11 (2012) 060 [arXiv:1208.0019] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, Forward-backward asymmetry as a discovery tool for Zbosons at the LHC, JHEP 01 (2016) 127 [arXiv:1503.02672] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, A FB as a discovery tool for Zbosons at the LHC, arXiv:1504.03168 [INSPIRE].
  50. [50]
    T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    DELPHI collaboration, P. Abreu et al., A study of radiative muon pair events at Z 0 energies and limits on an additional Zgauge boson, Z. Phys. C 65 (1995) 603 [INSPIRE].
  53. [53]
    F. del Aguila, G.D. Coughlan and M. Quirós, Gauge coupling renormalization with several U(1) factors, Nucl. Phys. B 307 (1988) 633 [Erratum ibid. B 312 (1989) 751] [INSPIRE].
  54. [54]
    F. del Aguila, M. Masip and M. Pérez-Victoria, Physical parameters and renormalization of U(1)a × U(1)b models, Nucl. Phys. B 456 (1995) 531 [hep-ph/9507455] [INSPIRE].
  55. [55]
    P.H. Chankowski, S. Pokorski and J. Wagner, Zand the Appelquist-Carrazzone decoupling, Eur. Phys. J. C 47 (2006) 187 [hep-ph/0601097] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].ADSGoogle Scholar
  57. [57]
    S. Dawson and W. Yan, Hiding the Higgs boson with multiple scalars, Phys. Rev. D 79 (2009) 095002 [arXiv:0904.2005] [INSPIRE].ADSGoogle Scholar
  58. [58]
    F. Lyonnet, I. Schienbein, F. Staub and A. Wingerter, PyR@TE: renormalization group equations for general gauge theories, Comput. Phys. Commun. 185 (2014) 1130 [arXiv:1309.7030] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    A. Ibarra, E. Molinaro and S.T. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [INSPIRE].Google Scholar
  61. [61]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].CrossRefADSMATHGoogle Scholar
  62. [62]
    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Zmodels: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    A.E. Faraggi and D.V. Nanopoulos, A superstring Zat O(1 TeV)?, Mod. Phys. Lett. A 6 (1991) 61 [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    A.E. Faraggi and J. Rizos, A light Zheterotic-string derived model, Nucl. Phys. B 895 (2015) 233 [arXiv:1412.6432] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    M. Abbas and S. Khalil, Neutrino masses, mixing and leptogenesis in TeV scale B-L extension of the standard model, JHEP 04 (2008) 056.CrossRefADSGoogle Scholar
  66. [66]
    S. Iso, N. Okada and Y. Orikasa, Resonant leptogenesis in the minimal B-L extended standard model at TeV, Phys. Rev. D 83 (2011) 093011 [arXiv:1011.4769].ADSGoogle Scholar
  67. [67]
    S. Blanchet, Z. Chacko, S.S. Granor and R.N. Mohapatra, Probing resonant leptogenesis at the LHC, Phys. Rev. D 82 (2010) 076008 [arXiv:0904.2174] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Claudio Corianò
    • 1
    • 2
  • Luigi Delle Rose
    • 2
  • Carlo Marzo
    • 2
  1. 1.STAG Research Centre and Mathematical SciencesUniversity of SouthamptonSouthamptonU.K.
  2. 2.Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN — Sezione di LecceLecceItaly

Personalised recommendations