Journal of High Energy Physics

, 2016:111 | Cite as

Discovery potential of T2K and NOvA in the presence of a light sterile neutrino

  • Sanjib Kumar Agarwalla
  • Sabya Sachi Chatterjee
  • Arnab Dasgupta
  • Antonio Palazzo
Open Access
Regular Article - Theoretical Physics


We study the impact of one light sterile neutrino on the prospective data expected to come from the two presently running long-baseline experiments T2K and NOvA when they will accumulate their full planned exposure. Introducing for the first time, the bi-probability representation in the 4-flavor framework, commonly used in the 3-flavor scenario, we present a detailed discussion of the behavior of the v μ v e and \( {\overline{v}}_{\mu}\to {\overline{v}}_e \) transition probabilities in the 3+1 scheme. We also perform a detailed sensitivity study of these two experiments (both in the stand-alone and combined modes) to assess their discovery reach in the presence of a light sterile neutrino. For realistic benchmark values of the mass-mixing parameters (as inferred from the existing global short-baseline fits), we find that the performance of both these experiments in claiming the discovery of the CP-violation induced by the standard CP-phase \( \delta \) 13 = \( \delta \) and the neutrino mass hierarchy get substantially deteriorated. The exact loss of sensitivity depends on the value of the unknown CP-phase \( \delta \) 14. Finally, we estimate the discovery potential of total CP-violation (i.e., induced simultaneously by the two CP-phases \( \delta \) 13 and \( \delta \) 14), and the capability of the two experiments of reconstructing the true values of such CP-phases. The typical (1\( \sigma \) level) uncertainties on the reconstructed phases are approximately 400 for \( \delta \) 13 and 500 for \( \delta \) 14.


Neutrino Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Kajita and A.B. McDonald, For the discovery of neutrino oscillations, which shows that neutrinos have mass, The Nobel Prize in Physics, Stockholm Sweden (2015).Google Scholar
  2. [2]
    Daya Bay collaboration, F.P. An et al., New measurement of antineutrino oscillation with the full detector configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802 [arXiv:1505.03456] [INSPIRE].
  3. [3]
    RENO collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment, arXiv:1511.05849 [INSPIRE].
  4. [4]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  5. [5]
    L. Stanco, Next generation of neutrino studies and facilities, arXiv:1511.09409 [INSPIRE].
  6. [6]
    K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].
  7. [7]
    A. Palazzo, Phenomenology of light sterile neutrinos: a brief review, Mod. Phys. Lett. A 28 (2013) 1330004 [arXiv:1302.1102] [INSPIRE]. CrossRefADSGoogle Scholar
  8. [8]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Lasserre, Light sterile neutrinos in particle physics: experimental status, Phys. Dark Univ. 4 (2014) 81 [arXiv:1404.7352] [INSPIRE]. CrossRefGoogle Scholar
  10. [10]
    A. Palazzo, Testing the very-short-baseline neutrino anomalies at the solar sector, Phys. Rev. D 83 (2011) 113013 [arXiv:1105.1705] [INSPIRE]. ADSGoogle Scholar
  11. [11]
    A. Palazzo, An estimate of θ 14 independent of the reactor antineutrino flux determinations, Phys. Rev. D 85 (2012) 077301 [arXiv:1201.4280] [INSPIRE]. ADSGoogle Scholar
  12. [12]
    C. Giunti and Y.F. Li, Matter effects in active-sterile solar neutrino oscillations, Phys. Rev. D 80 (2009) 113007 [arXiv:0910.5856] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Nunokawa, O.L.G. Peres and R. Zukanovich Funchal, Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [INSPIRE].
  14. [14]
    IceCube collaboration, J. Salvadó Serra, Sterile neutrino search in IceCube neutrino observatory, talk given at the VII CPAN Days Conference, Segovia Spain December 1-3 2015.Google Scholar
  15. [15]
    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].
  16. [16]
    A. Timmons, Searching for sterile neutrinos at MINOS, in Topical Research Meeting on Prospects in Neutrino Physics (NuPhys2014), London U.K. December 15-17 2014 [arXiv:1504.04046] [INSPIRE].
  17. [17]
    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].
  18. [18]
    OPERA collaboration, N. Agafonova et al., Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam, JHEP 06 (2015) 069 [arXiv:1503.01876] [INSPIRE].
  19. [19]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Donini and D. Meloni, The 2 + 2 and 3 + 1 four family neutrino mixing at the neutrino factory, Eur. Phys. J. C 22 (2001) 179 [hep-ph/0105089] [INSPIRE].
  21. [21]
    A. Donini, M. Lusignoli and D. Meloni, Telling three neutrinos from four neutrinos at the neutrino factory, Nucl. Phys. B 624 (2002) 405 [hep-ph/0107231] [INSPIRE].
  22. [22]
    A. Donini, M. Maltoni, D. Meloni, P. Migliozzi and F. Terranova, 3 + 1 sterile neutrinos at the CNGS, JHEP 12 (2007) 013 [arXiv:0704.0388] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    A. Dighe and S. Ray, Signatures of heavy sterile neutrinos at long baseline experiments, Phys. Rev. D 76 (2007) 113001 [arXiv:0709.0383] [INSPIRE]. ADSGoogle Scholar
  24. [24]
    A. Donini, K.-I. Fuki, J. Lopez-Pavon, D. Meloni and O. Yasuda, The discovery channel at the neutrino factory: v μv τ pointing to sterile neutrinos, JHEP 08 (2009) 041 [arXiv:0812.3703] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    O. Yasuda, Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, in Physics beyond the Standard Models of particles, cosmology and astrophysics. Proceedings, 5th International Conference, Beyond 2010, Cape Town South Africa February 1-6 2010, World Scientific, U.S.A. (2011), pg. 300 [arXiv:1004.2388] [INSPIRE].
  26. [26]
    D. Meloni, J. Tang and W. Winter, Sterile neutrinos beyond LSND at the neutrino factory, Phys. Rev. D 82 (2010) 093008 [arXiv:1007.2419] [INSPIRE].ADSGoogle Scholar
  27. [27]
    B. Bhattacharya, A.M. Thalapillil and C.E.M. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ 13, Phys. Rev. D 85 (2012) 073004 [arXiv:1111.4225] [INSPIRE]. ADSGoogle Scholar
  28. [28]
    A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report volume 2: the physics program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].
  30. [30]
    D. Hollander and I. Mocioiu, Minimal 3 + 2 sterile neutrino model at LBNE, Phys. Rev. D 91 (2015) 013002 [arXiv:1408.1749] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Gandhi, B. Kayser, M. Masud and S. Prakash, The impact of sterile neutrinos on CP measurements at long baselines, JHEP 11 (2015) 039 [arXiv:1508.06275] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    S.K. Agarwalla, T. Li and A. Rubbia, An incremental approach to unravel the neutrino mass hierarchy and CP-violation with a long-baseline superbeam for large θ 13 , JHEP 05 (2012) 154 [arXiv:1109.6526] [INSPIRE]. CrossRefADSGoogle Scholar
  34. [34]
    LAGUNA-LBNO collaboration, S.K. Agarwalla et al., The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment, JHEP 05 (2014) 094 [arXiv:1312.6520] [INSPIRE].
  35. [35]
    Hyper-Kamiokande Working Group collaboration, K. Abe et al., A Long Baseline Neutrino Oscillation experiment using J-PARC neutrino beam and Hyper-Kamiokande, arXiv:1412.4673 [INSPIRE].
  36. [36]
    Hyper-Kamiokande Proto-Collaboration, K. Abe et al., Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, Prog. Theor. Exp. Phys. 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
  37. [37]
    A. Palazzo, 3-flavor and 4-flavor implications of the latest T2K and NOvA electron (anti-)neutrino appearance results, arXiv:1509.03148 [INSPIRE].
  38. [38]
    A. Palazzo, Consistent analysis of the v μv e sterile neutrinos searches of ICARUS and OPERA, Phys. Rev. D 91 (2015) 091301 [arXiv:1503.03966] [INSPIRE]. ADSGoogle Scholar
  39. [39]
    M. Antonello et al., Experimental search for the “LSND anomaly” with the ICARUS detector in the CNGS neutrino beam, Eur. Phys. J. C 73 (2013) 2345 [arXiv:1209.0122] [INSPIRE]. CrossRefADSGoogle Scholar
  40. [40]
    M. Antonello et al., Some conclusive considerations on the comparison of the ICARUS v μv e oscillation search with the MiniBooNE low-energy event excess, arXiv:1502.04833 [INSPIRE].
  41. [41]
    OPERA collaboration, N. Agafonova et al., Search for v μv e oscillations with the OPERA experiment in the CNGS beam, JHEP 07 (2013) 004 [Addendum ibid. 07 (2013) 085] [arXiv:1303.3953] [INSPIRE].
  42. [42]
    C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Pragmatic view of short-baseline neutrino oscillations, Phys. Rev. D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE]. ADSGoogle Scholar
  46. [46]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].
  48. [48]
    K. Asano and H. Minakata, Large-θ 13 perturbation theory of neutrino oscillation for long-baseline experiments, JHEP 06 (2011) 022 [arXiv:1103.4387] [INSPIRE]. CrossRefADSGoogle Scholar
  49. [49]
    S.K. Agarwalla, Y. Kao and T. Takeuchi, Analytical approximation of the neutrino oscillation matter effects at large θ 13, JHEP 04 (2014) 047 [arXiv:1302.6773] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].
  51. [51]
    A. Friedland and I.M. Shoemaker, Searching for novel neutrino interactions at NOvA and beyond in light of large θ 13 , arXiv:1207.6642 [INSPIRE].
  52. [52]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
  53. [53]
    T2K collaboration, K. Abe et al., The T2K experiment, Nucl. Instrum. Meth. A 659 ( 2011) 106 [arXiv:1106.1238] [INSPIRE].
  54. [54]
    D. Ayres et al., Letter of intent to build an off-axis detector to study v μv e oscillations with the NuMI neutrino beam, hep-ex/0210005 [INSPIRE].
  55. [55]
    NOvA collaboration, D.S. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study v μv e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  56. [56]
    NOvA collaboration, D.S. Ayres et al., The NOvA technical design report, FERMILAB-DESIGN-2007-01, Fermilab, Batavia U.S.A. (2007) [INSPIRE].
  57. [57]
    NOvA collaboration, R.B. Patterson, The NOvA experiment: status and outlook, Nucl. Phys. Proc. Suppl. B 235-236 (2013) 151 [arXiv:1209.0716] [INSPIRE].
  58. [58]
    A. Para and M. Szleper, Neutrino oscillations experiments using off-axis NuMI beam, hep-ex/0110032 [INSPIRE].
  59. [59]
    T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
  60. [60]
    T2K collaboration, M. Ravonel, Antineutrino oscillations with T2K, talk given at the EPS-HEP 2015 conference, Vienna Austria July 22-29 2015.Google Scholar
  61. [61]
    T2K collaboration, M.R. Salzgeber, Anti-neutrino oscillations with T2K, arXiv:1508.06153 [INSPIRE].
  62. [62]
    T2K collaboration, K. Abe et al., Neutrino oscillation physics potential of the T2K experiment, Prog. Theor. Exp. Phys. 2015 (2015) 043C01 [arXiv:1409.7469] [INSPIRE].
  63. [63]
    NuMI, NOvA and LBNE collaborations, S. Childress and J. Strait, Long baseline neutrino beams at Fermilab, J. Phys. Conf. Ser. 408 (2013) 012007 [arXiv:1304.4899] [INSPIRE].
  64. [64]
    NOvA collaboration, R. Patterson, First oscillation results from NOvA, talk given at the Joint Experimental-Theoretical Physics Seminar, Fermilab Batavia U.S.A. August 6 2015.Google Scholar
  65. [65]
    NOvA collaboration, J. Bian, First Results of v e appearance analysis and electron neutrino identification at NOv A, in Meeting of the APS Division of Particles and Fields (DPF 2015), Ann Arbor MI U.S.A. August 4-8 2015 [arXiv:1510.05708] [INSPIRE].
  66. [66]
    NOvA collaboration, P. Adamson et al., First measurement of electron neutrino appearance in NOvA, arXiv:1601.05022 [INSPIRE].
  67. [67]
    NOvA collaboration, P. Adamson et al., First measurement of muon-neutrino disappearance in NOvA, arXiv:1601.05037 [INSPIRE].
  68. [68]
    S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOvA for large θ 13 and combined performance with a LArTPC and T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    S.K. Agarwalla, S. Prakash and S.U. Sankar, Resolving the octant of θ 23 with T2K and NOvA, JHEP 07 (2013) 131 [arXiv:1301.2574] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  71. [71]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  72. [72]
    Daya Bay collaboration, L. Zhan, Recent results from Daya Bay, PoS(NEUTEL2015) 017 [arXiv:1506.01149] [INSPIRE].
  73. [73]
    S.K. Agarwalla, S. Prakash and W. Wang, High-precision measurement of atmospheric mass-squared splitting with T2K and NOvA, arXiv:1312.1477 [INSPIRE].
  74. [74]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297. CrossRefADSGoogle Scholar
  75. [75]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
  76. [76]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162] [INSPIRE].
  77. [77]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
  • Sabya Sachi Chatterjee
    • 1
  • Arnab Dasgupta
    • 1
  • Antonio Palazzo
    • 2
    • 3
  1. 1.Institute of Physics, Sachivalaya MargBhubaneswarIndia
  2. 2.Dipartimento Interateneo di Fisica “Michelangelo Merlin”BariItaly
  3. 3.Istituto Nazionale di Fisica, Nucleare (INFN), Sezione di BariBariItaly

Personalised recommendations