Advertisement

Journal of High Energy Physics

, 2015:137 | Cite as

Softened gravity and the extension of the standard model up to infinite energy

  • Gian F. Giudice
  • Gino Isidori
  • Alberto Salvio
  • Alessandro Strumia
Open Access
Regular Article - Theoretical Physics

Abstract

Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than 1011 GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfill these properties, we classify 4- dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions g 1 = 0, M t = 186 GeV, M τ = 0, M h = 163 GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.

Keywords

Higgs Physics Beyond Standard Model Renormalization Group Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.P. Fatelo, J.M. Gerard, T. Hambye and J. Weyers, Symmetry breaking induced by top loops, Phys. Rev. Lett. 74 (1995) 492 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    T. Hambye, Symmetry breaking induced by top quark loops from a model without scalar mass, Phys. Lett. B 371 (1996) 87 [hep-ph/9510266] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P.H. Frampton and C. Vafa, Conformal approach to particle phenomenology, hep-th/9903226 [INSPIRE].
  7. [7]
    K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    S. Iso and Y. Orikasa, TeV scale B-L model with a flat Higgs potential at the Planck scalein view of the hierarchy problem , PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].Google Scholar
  14. [14]
    T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Shaposhnikov, Asymptotic safety of gravity and the Higgs-boson mass, Theor. Math. Phys. 170 (2012) 229 [Teor. Mat. Fiz. 170 (2012) 280] [INSPIRE].
  16. [16]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the electroweak scale through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Farzinnia, H.-J. He and J. Ren, Natural electroweak symmetry breaking from scale invariant Higgs mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, Poincaré protection for a natural electroweak scale, Phys. Rev. D 89 (2014) 115018 [arXiv:1310.0223] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D. Chway, T.H. Jung, H.D. Kim and R. Dermisek, Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale, Phys. Rev. Lett. 113 (2014) 051801 [arXiv:1308.0891] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and conformal symmetry breaking by a strongly coupled hidden sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    C.T. Hill, Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, arXiv:1401.5609 [INSPIRE].
  27. [27]
    S. Benic and B. Radovcic, Electroweak breaking and Dark Matter from the common scale, Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    P.H. Chankowski, A. Lewandowski, K.A. Meissner and H. Nicolai, Softly broken conformal symmetry and the stability of the electroweak scale, Mod. Phys. Lett. A 30 (2015) 1550006 [arXiv:1404.0548] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    H. Davoudiasl and I.M. Lewis, Right-handed neutrinos as the origin of the electroweak scale, Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Allison, C.T. Hill and G.G. Ross, Ultra-weak sector, Higgs boson mass and the dilaton, Phys. Lett. B 738 (2014) 191 [arXiv:1404.6268] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    G.M. Pelaggi, Predictions of a model of weak scale from dynamical breaking of scale invariance, arXiv:1406.4104 [INSPIRE].
  32. [32]
    W. Altmannshofer, W.A. Bardeen, M. Bauer, M. Carena and J.D. Lykken, Light dark matter, naturalness and the radiative origin of the electroweak scale, JHEP 01 (2015) 032 [arXiv:1408.3429] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    R. Foot, A. Kobakhidze and A. Spencer-Smith, Criticality in the scale invariant standard model (squared), arXiv:1409.4915 [INSPIRE].
  34. [34]
    M.B. Einhorn and D.R.T. Jones, Naturalness and dimensional transmutation in classically scale-invariant gravity, arXiv:1410.8513 [INSPIRE].
  35. [35]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and dark matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    R. Sundrum, Fat euclidean gravity with small cosmological constant, Nucl. Phys. B 690 (2004) 302 [hep-th/0310251] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    D.F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP 12 (2014) 178 [arXiv:1406.2337] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    P.J. Redmond and J.L. Uretsky, Conjecture concerning the properties of nonrenormalizable field theories, Phys. Rev. Lett. 1 (1958) 147 [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    N.N. Bogolyubov, A.A. Logunov and D.V. Shirkov, The method of dispersion relations and perturbation theory Sov. Phys. JETP 37 (1960) 574.Google Scholar
  42. [42]
    I.M. Suslov, Renormalization group functions of the ϕ 4 theory in the strong coupling limit: analytical results, J. Exp. Theor. Phys. 107 (2008) 413 [Zh. Eksp. Teor. Fiz. 134 (2008) 490] [arXiv:1010.4081] [INSPIRE].
  43. [43]
    I.M. Suslov, Exact asymptotics for β-function in QED, J. Exp. Theor. Phys. 108 (2009) 980 [arXiv:0804.2650] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  45. [45]
    D.F. Litim, M. Mojaza and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, arXiv:1501.03061 [INSPIRE].
  46. [46]
    G. Marques Tavares, M. Schmaltz and W. Skiba, Higgs mass naturalness and scale invariance in the UV, Phys. Rev. D 89 (2014) 015009 [arXiv:1308.0025] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 1, Phys. Rev. D 8 (1973) 3633 [INSPIRE].ADSGoogle Scholar
  48. [48]
    D.J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D 9 (1974) 980 [INSPIRE].ADSGoogle Scholar
  50. [50]
    H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    S.R. Coleman and D.J. Gross, Price of asymptotic freedom, Phys. Rev. Lett. 31 (1973) 851 [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    T.P. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  53. [53]
    E.S. Fradkin and O.K. Kalashnikov, Asymptotically free SU(5) model of unified interaction, Phys. Lett. B 64 (1976) 177 [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    O.K. Kalashnikov, Asymptotically free models of unified interaction, Lebedev-77-206 (1977) [INSPIRE].
  55. [55]
    E.S. Fradkin, O.K. Kalashnikov and S.E. Konshtein, Asymptotically free E 6 model of unified interaction, Lett. Nuovo Cim. 21 (1978) 5 [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    O.K. Kalashnikov, Asymptotically free SU(2) × SU(2) × SU(4) model of unified interaction, Phys. Lett. B 72 (1977) 65 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    B. Pendleton and G.G. Ross, Mass and mixing angle predictions from infrared fixed points, Phys. Lett. B 98 (1981) 291 [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  59. [59]
    C.G. Callan and S. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    S.C. Frautschi and J. Kim, SU(5) Higgs problem with adjoint + vector representations, Nucl. Phys. B 196 (1982) 301 [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    K.G. Klimenko, On necessary and sufficient conditions for some Higgs potentials to be bounded from below, Theor. Math. Phys. 62 (1985) 58 [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    K. Kannike, Vacuum stability conditions from copositivity criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    G. Isidori, Flavor physics and CP-violation, arXiv:1302.0661 [INSPIRE].
  71. [71]
    CMS collaboration, Search for heavy narrow dilepton resonances in pp collisions at \( \sqrt{s}=7 \) TeV and \( \sqrt{s}=8 \) TeV, Phys. Lett. B 720 (2013) 63 [arXiv:1212.6175] [INSPIRE].ADSGoogle Scholar
  72. [72]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 87 (2013) 114015 [arXiv:1302.4794] [INSPIRE].ADSGoogle Scholar
  73. [73]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].ADSGoogle Scholar
  74. [74]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1407.1376 [INSPIRE].
  75. [75]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Zmodels: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Zmodels: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].CrossRefADSGoogle Scholar
  78. [78]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].ADSGoogle Scholar
  79. [79]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].Google Scholar
  80. [80]
    V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard charged current interactions: β decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    R. Foot, An alternative SU(4) × SU(2)L × SU(2)R model, Phys. Lett. B 420 (1998) 333 [hep-ph/9708205] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  82. [82]
    R.R. Volkas, Prospects for mass unification at low-energy scales, Phys. Rev. D 53 (1996) 2681 [hep-ph/9507215] [INSPIRE].ADSGoogle Scholar
  83. [83]
    G. Valencia and S. Willenbrock, Quark-lepton unification and rare meson decays, Phys. Rev. D 50 (1994) 6843 [hep-ph/9409201] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].CrossRefADSGoogle Scholar
  85. [85]
    QCDSF collaboration, G.S. Bali et al., The strange and light quark contributions to the nucleon mass from Lattice QCD, Phys. Rev. D 85 (2012) 054502 [arXiv:1111.1600] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Gian F. Giudice
    • 1
  • Gino Isidori
    • 2
    • 3
  • Alberto Salvio
    • 4
  • Alessandro Strumia
    • 5
    • 6
  1. 1.CERN, Theory DivisionGeneva 23Switzerland
  2. 2.Physik-InstitutUniversität ZürichZürichSwitzerland
  3. 3.INFN, Laboratori Nazionali di FrascatiFrascatiItaly
  4. 4.Departamento de Física TeóricaUniversidad Autónoma de Madrid and Instituto de Física Teórica IFT-UAM/CSICMadridSpain
  5. 5.INFN — Sezione di Pisa e Dipartimento di Fisica dell’Università di PisaPisaItaly
  6. 6.National Institute of Chemical Physics and BiophysicsTallinnEstonia

Personalised recommendations