Advertisement

Journal of High Energy Physics

, 2015:58 | Cite as

Stability and symmetry breaking in the general three-Higgs-doublet model

  • M. Maniatis
  • O. Nachtmann
Open Access
Regular Article - Theoretical Physics

Abstract

Stability, electroweak symmetry breaking, and the stationarity equations of the general three-Higgs doublet model (3HDM) where all doublets carry the same hypercharge are discussed in detail. Employing the bilinear formalism the study of the 3HDM potential turns out to be straightforward.

Keywords

Beyond Standard Model CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    F. Nagel, New aspects of gauge-boson couplings and the Higgs sector, Ph.D. Thesis, Heidelberg University, Heidelberg Germany (2004) http://www.ub.uni-heidelberg.de/archiv/4803.
  4. [4]
    M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    C.C. Nishi, CP violation conditions in N-Higgs-doublet potentials, Phys. Rev. D 74 (2006) 036003 [Erratum ibid. D 76 (2007) 119901] [hep-ph/0605153] [INSPIRE].
  6. [6]
    M. Maniatis, A. von Manteuffel and O. Nachtmann, CP violation in the general two-Higgs-doublet model: A Geometric view, Eur. Phys. J. C 57 (2008) 719 [arXiv:0707. 3344] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    E. Ma and M. Maniatis, Symbiotic Symmetries of the Two-Higgs-Doublet Model, Phys. Lett. B 683 (2010) 33 [arXiv:0909.2855] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    B. Grzadkowski, M. Maniatis and J. Wudka, The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model, JHEP 11 (2011) 030 [arXiv:1011.5228] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    P.M. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann and J.P. Silva, Geometric picture of generalized-CP and Higgs-family transformations in the two-Higgs-doublet model, Int. J. Mod. Phys. A 26 (2011) 769 [arXiv:1010.0935] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    C.C. Nishi, The Structure of potentials with N Higgs doublets, Phys. Rev. D 76 (2007) 055013 [arXiv:0706.2685] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I.P. Ivanov, Properties of the general NHDM. II. Higgs potential and its symmetries, JHEP 07 (2010) 020 [arXiv:1004.1802] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    V. Keus, S.F. King and S. Moretti, Three-Higgs-doublet models: symmetries, potentials and Higgs boson masses, JHEP 01 (2014) 052 [arXiv:1310.8253] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    I.P. Ivanov and C.C. Nishi, Properties of the general NHDM. I. The Orbit space, Phys. Rev. D 82 (2010) 015014 [arXiv:1004.1799] [INSPIRE].ADSGoogle Scholar
  14. [14]
    I.P. Ivanov and E. Vdovin, Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model, Eur. Phys. J. C 73 (2013) 2309 [arXiv:1210.6553] [inSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    S.-L. Chen, M. Frigerio and E. Ma, Large neutrino mixing and norma! mass hierarchy: A Discrete understanding, Phys. Rev. D 70 (2004) 073008 [Erratum ibid. D 70 (2004) 079905] [hep-ph/0404084] [INSPIRE].
  16. [16]
    L. Lavoura and H. Kuhbock, A 4 model for the quark mass matrices, Eur. Phys. J. C 55 (2008) 303 [arXiv:0711.0670] [inSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    Aranda, C. Bonilla, F. de Anda, A. Delgado and J. Hernandez-Sanchez, Higgs decay into two photons from a 3HDM with flavor symmetry, Phys. Lett. B 725 (2013) 97 [arXiv: 1302.1060] [inSPIRE].
  18. [18]
    A. Aranda, C. Bonilla and J.L. Diaz-Cruz, Three generations of Higgses and the cyclic groups, Phys. Lett. B 717 (2012) 248 [arXiv:1204.5558] [inSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    W. Grimus, L. Lavoura and D. Neubauer, A Light pseudoscalar in a model with lepton family symmetry O(2), JHEP 07 (2008) 051 [arXiv:0805.1175] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M. Maniatis, A. von Manteuffel and O. Nachtmann, Determining the global minimum of Higgs potentials via Groebner bases: Applied to the NMSSM, Eur. Phys. J. C 49 (2007) 1067 [hep-ph/0608314] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    M. Maniatis and D. Mehta, Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation, Eur. Phys. J. Plus 127 (2012) 91 [arXiv:1203.0409] [inSPIRE].CrossRefGoogle Scholar
  22. [22]
    O. Nachtmann, Elementary Particle Physics. Concepts and Phenomena, Springer-Verlag Berlin Heidelberg (1990).Google Scholar
  23. [23]
    J. Verschelde, Algorithm 795: PHCpack: A General Purpose Solver for Polynomial systems by Homotopy Continuation, ACM Trans. Math. Software 25 (1999) 2. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Departamento de Ciencias BásicasUniversidad del Bío-BíoChiliánChile
  2. 2.Institut für Theoretische PhysikHeidelbergGermany

Personalised recommendations