Journal of High Energy Physics

, 2014:89 | Cite as

BFKL equation with running QCD coupling and HERA data

  • Eugene Levin
  • Irina Potashnikova
Open Access


In this paper we developed approach based on the BFKL evolution in ln(Q 2). We show that the simplest diffusion approximation with running QCD coupling is able to describe the HERA experimental data on the deep inelastic structure function with good χ2 /d.o.f. ≈ 1.3. From our description of the experimental data we learned several lessons; (i) the non-perturbative physics at long distances started to show up at Q 2 = 0.25 GeV2; (ii) the scattering amplitude at Q 2 = 0.25 GeV2 cannot be written as sum of soft Pomeron and the secondary Reggeon but the Pomeron interactions should be taken into account; (iii) the Pomeron interactions can be reduced to the enhanced diagrams and, therefore, we do not see any needs for the shadowing corrections at HERA energies; and (iv) we demonstrated that the shadowing correction could be sizable at higher than HERA energies without any contradiction with our initial conditions.


Deep Inelastic Scattering (Phenomenology) QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    Ya.Ya. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597].Google Scholar
  3. [3]
    L. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986) 904 [INSPIRE].Google Scholar
  5. [5]
    Y.V. Kovchegov and E. Levin, Quantum choromodynamics at high energies, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge U.K. (2012).CrossRefGoogle Scholar
  6. [6]
    H. Abramowicz and A. Caldwell, HERA collider physics, Rev. Mod. Phys. 71 (1999) 1275 [hep-ex/9903037] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Levin, The BFKL high-energy asymptotics in the next-to-leading approximation, Nucl. Phys. B 545 (1999) 481 [hep-ph/9806228] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    H. Kowalski, L. Lipatov and D. Ross, BFKL evolution as a communicator between small and large energy scales, Phys. Part. Nucl. 44 (2013) 547 [arXiv:1205.6713] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    H. Kowalski, L. Lipatov and D. Ross, Indirect evidence for new physics at the 10 TeV scale, arXiv:1109.0432 [INSPIRE].
  11. [11]
    H. Kowalski, L. Lipatov, D. Ross and G. Watt, The new HERA data and the determination of the infrared behaviour of the BFKL amplitude, Nucl. Phys. A 854 (2011) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Kowalski, L. Lipatov, D. Ross and G. Watt, Using HERA data to determine the infrared behaviour of the BFKL amplitude, Eur. Phys. J. C 70 (2010) 983 [arXiv:1005.0355] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Gao et al., The CT10 NNLO global analysis of QCD, arXiv:1302.6246 [INSPIRE].
  15. [15]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions, Eur. Phys. J. C 70 (2010) 51 [arXiv:1007.2624] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Alekhin, J. Blumlein, S. Klein and S. Moch, Variable-flavor-number scheme in analysis of heavy-quark electro-production data, arXiv:0908.3128 [INSPIRE].
  20. [20]
    H1 and ZEUS collaboration, F. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V.S. Fadin and L. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V.S. Fadin and R. Fiore, The generalized nonforward BFKL equation and thebootstrapcondition for the gluon Reggeization in the NLLA, Phys. Lett. B 440 (1998) 359 [hep-ph/9807472] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    I. Balitsky and G.A. Chirilli, High-energy amplitudes in N = 4 SYM in the next-to-leading order, Phys. Lett. B 687 (2010) 204 [arXiv:0911.5192] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    Y.V. Kovchegov and H. Weigert, Triumvirate of running couplings in small-x evolution, Nucl. Phys. A 784 (2007) 188 [hep-ph/0609090] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Levin, Renormalons at low x, Nucl. Phys. B 453 (1995) 303 [hep-ph/9412345] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Braun, High color Pomerons with a running coupling constant in the Hartree-Fock approximation, Phys. Lett. B 351 (1995) 528 [hep-ph/9412202] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Bartels, A note on the infrared cutoff dependence of the BFKL Pomeron, J. Phys. G 19 (1993) 1611 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    V. Gribov, Interaction of gamma quanta and electrons with nuclei at high-energies, Sov. Phys. JETP 30 (1970) 709 [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Bjorken and J.B. Kogut, Correspondence arguments for high-energy collisions, Phys. Rev. D 8 (1973) 1341 [INSPIRE].ADSGoogle Scholar
  31. [31]
    L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure, Phys. Rept. 160 (1988) 235 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Kopeliovich, L. Lapidus and A. Zamolodchikov, Dynamics of color in hadron diffraction on nuclei, JETP Lett. 33 (1981) 595 [INSPIRE].ADSGoogle Scholar
  33. [33]
    G. Bertsch, S.J. Brodsky, A. Goldhaber and J. Gunion, Diffractive excitation in QCD, Phys. Rev. Lett. 47 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.H. Mueller, Small x behavior and parton saturation: a QCD model, Nucl. Phys. B 335 (1990) 115 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    N.N. Nikolaev and B. Zakharov, Color transparency and scaling properties of nuclear shadowing in deep inelastic scattering, Z. Phys. C 49 (1991) 607 [INSPIRE].Google Scholar
  36. [36]
    E. Gotsman, E. Levin and U. Maor, N = 4 SYM and QCD motivated approach to soft interactions at high energies, Eur. Phys. J. C 71 (2011) 1553 [arXiv:1010.5323] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A.B. Kaidalov and M.G. Poghosyan, Description of soft diffraction in the framework of reggeon calculus: Predictions for LHC, arXiv:0909.5156 [INSPIRE].
  38. [38]
    A. Martin, M. Ryskin and V. Khoze, From hard to soft high-energy pp interactions, arXiv:1110.1973 [INSPIRE].
  39. [39]
    M. Ryskin, A. Martin and V. Khoze, High-energy strong interactions: fromhardtosoft’, Eur. Phys. J. C 71 (2011) 1617 [arXiv:1102.2844] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model, Phys. Rev. D 83 (2011) 014018 [arXiv:1010.1869] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Kotikov, L. Lipatov, A. Onishchenko and V. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754-756] [hep-th/0404092] [INSPIRE].
  42. [42]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    E. Levin and I. Potashnikova, Inelastic processes in DIS and N = 4 SYM, JHEP 08 (2010) 112 [arXiv:1007.0306] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.C. Brower, M. Djuric, I. Sarcevic and C.-I. Tan, String-gauge dual description of deep inelastic scattering at small-x, JHEP 11 (2010) 051 [arXiv:1007.2259] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.H. Rezaeian, M. Siddikov, M. Van de Klundert and R. Venugopalan, IP-Sat: Impact-Parameter dependent SATuration model revised, PoS(DIS 2013) 060 [arXiv:1307.0165] [INSPIRE].
  46. [46]
    G. Watt and H. Kowalski, Impact parameter dependent colour glass condensate dipole model, Phys. Rev. D 78 (2008) 014016 [arXiv:0712.2670] [INSPIRE].ADSGoogle Scholar
  47. [47]
    H. Kowalski, L. Motyka and G. Watt, Exclusive diffractive processes at HERA within the dipole picture, Phys. Rev. D 74 (2006) 074016 [hep-ph/0606272] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.L. Albacete et al., AAMQS: a non-linear QCD analysis of new HERA data at small-x including heavy quarks, Eur. Phys. J. C 71 (2011) 1705 [arXiv:1012.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].ADSGoogle Scholar
  51. [51]
    Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].ADSGoogle Scholar
  52. [52]
    E. Levin and S. Tapia, BFKL Pomeron: modeling confinement, JHEP 07 (2013) 183 [arXiv:1304.8022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    A. Kovner and U.A. Wiedemann, Nonlinear QCD evolution: saturation without unitarization, Phys. Rev. D 66 (2002) 051502 [hep-ph/0112140] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Hentschinski, A. Sabio Vera and C. Salas, Description of F 2 and F L at small x using a collinearly-improved BFKL resummation, Phys. Rev. D 87 (2013) 076005 [arXiv:1301.5283] [INSPIRE].ADSGoogle Scholar
  55. [55]
    C. Salas, BFKL dynamics and collinear resummation: the case of F 2 and forward jets, invited talk at Low x 2013 WS, May 30-June 4, Rehovot-Eilat, Israel (2013).Google Scholar
  56. [56]
    C. Salas, private communication.Google Scholar
  57. [57]
    H1 collaboration, C. Alexa et al., Elastic and proton-dissociative photoproduction of J/ψ mesons at HERA, Eur. Phys. J. C 73 (2013) 2466 [arXiv:1304.5162] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Particle Physics, School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  2. 2.Departamento de FísicaUniversidad Técnica Federico Santa María, and Centro Cientıfico-Tecnológico de ValparaısoValparaisoChile

Personalised recommendations