Advertisement

Journal of High Energy Physics

, 2014:53 | Cite as

Littlest Higgs with T-parity: status and prospects

  • Jürgen Reuter
  • Marco Tonini
  • Maikel de Vries
Open Access
Article

Abstract

The Littlest Higgs model with T-parity is providing an attractive solution to the fine-tuning problem. This solution is only entirely natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. We examine the constraints using the latest results from the 8 TeV run at the LHC. Both direct searches and Higgs precision physics are taken into account. The constraints from Higgs couplings are by now competing with electroweak precision tests and both combined exclude f up to 694 GeV or 560 GeV depending on the implementation of the down-type Yukawa sector. Direct searches provide robust and complementary limits and constrain f to be larger than 638 GeV. We show that the Littlest Higgs model parameter space is slowly driven into the TeV range. Furthermore, we develop a strategy on how to optimise present supersymmetry searches for the considered model, with the goal to improve the constraints and yield more stringent limits on f .

Keywords

Phenomenological Models Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D.E. Kaplan and M. Schmaltz, The little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Schmaltz, The simplest little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004)061 [hep-ph/0405243] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Pappadopulo and A. Vichi, T-parity, its problems and their solution, JHEP 03 (2011) 072 [arXiv:1007.4807] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Schmaltz, D. Stolarski and J. Thaler, The bestest little Higgs, JHEP 09 (2010) 018 [arXiv:1006.1356] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T.A. Martin and A. de la Puente, Darkening the little Higgs, Phys. Lett. B 727 (2013) 443 [arXiv:1304.7835] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Kearney, A. Pierce and J. Thaler, Exotic top partners and little Higgs, JHEP 10 (2013) 230 [arXiv:1306.4314] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W. Kilian, D. Rainwater and J. Reuter, Pseudo-axions in little Higgs models, Phys. Rev. D 71 (2005)015008 [hep-ph/0411213] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W. Kilian, D. Rainwater and J. Reuter, Distinguishing little-Higgs product and simple group models at the LHC and ILC, Phys. Rev. D 74 (2006) 095003 [Erratum ibid. D 74 (2006) 099905] [hep-ph/0609119] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.L. Hewett, F.J. Petriello and T.G. Rizzo, Constraining the littlest Higgs, JHEP 10 (2003) 062 [hep-ph/0211218] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Kilian and J. Reuter, The low-energy structure of little Higgs models, Phys. Rev. D 70 (2004)015004 [hep-ph/0311095] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Reuter and M. Tonini, Can the 125 GeV Higgs be the little Higgs?, JHEP 02 (2013) 077 [arXiv:1212.5930] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Asano, S. Matsumoto, N. Okada and Y. Okada, Cosmic positron signature from dark matter in the littlest Higgs model with T-parity, Phys. Rev. D 75 (2007) 063506 [hep-ph/0602157] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005)035016 [hep-ph/0411264] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Blanke et al., Rare and CP-violating K and B Decays in the littlest Higgs model with T parity, JHEP 01 (2007) 066 [hep-ph/0610298] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Belyaev, C.-R. Chen, K. Tobe and C.-P. Yuan, Phenomenology of littlest Higgs model with T parity: including effects of T odd fermions, Phys. Rev. D 74(2006)115020 [hep-ph/0609179] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.-R. Chen, K. Tobe and C.-P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Wang, J.M. Yang and J. Zhu, Dark matter in little Higgs model under current experimental constraints from LHC, Planck and Xenon, Phys. Rev. D 88 (2013) 075018 [arXiv:1307.7780] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Hubisz, S.J. Lee and G. Paz, The flavor of a little Higgs with T-parity, JHEP 06 (2006) 041 [hep-ph/0512169] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 720 (2013) 277 [arXiv:1211.1597] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012)1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Moretti, T. Ohl and J. Reuter, OMega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
  41. [41]
    N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, arXiv:1307.6346 [INSPIRE].
  44. [44]
    ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2013) 029 [arXiv:1210.1718] [INSPIRE].ADSGoogle Scholar
  45. [45]
    CMS collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 05 (2012) 055 [arXiv:1202.5535] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  47. [47]
    CMS collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-048 (2012).
  48. [48]
    M.S. Carena, J. Hubisz, M. Perelstein and P. Verdier, Collider signature of T-quarks, Phys. Rev. D 75 (2007) 091701 [hep-ph/0610156] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Perelstein and J. Shao, T-quarks at the Large Hadron Collider: 2010-12, Phys. Lett. B 704 (2011)510 [arXiv:1103.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  51. [51]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t} \) + etmiss final state in 21 fb −1 of p-p collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
  52. [52]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at 8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  53. [53]
    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s} \) = 8 TeV in final states with jets, missing transverse momentum and one isolated lepton, ATLAS-CONF-2012-104 (2012).
  54. [54]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s} \) = 8 TeV pp collisions using 13.0 fb −1 of ATLAS data, ATLAS-CONF-2012-166 (2012).
  55. [55]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in sqrts = 8 TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
  56. [56]
    ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb −1 of proton-proton collisions at \( \sqrt{s} \) = 8 TeV,ATLAS-CONF-2013-007(2013).
  57. [57]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 07 (2013) 041] [arXiv:1212.6194] [INSPIRE].ADSGoogle Scholar
  58. [58]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].ADSGoogle Scholar
  59. [59]
    D. Choudhury, D.K. Ghosh and S.K. Rai, Dijet signals of the little Higgs model with T-parity, JHEP 07 (2012) 013 [arXiv:1202.4213] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).
  61. [61]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2012-135 (2012).
  62. [62]
    ATLAS collaboration, Search for the standard model Higgs boson in Hτ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).
  63. [63]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗)ℓνℓν decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
  64. [64]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  65. [65]
    ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the γ-γ channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).
  66. [66]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  67. [67]
    CMS collaboration, Higgs to bb in the VBF channel, CMS-PAS-HIG-13-011 (2013).
  68. [68]
    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks, CMS-PAS-HIG-13-012 (2013).
  69. [69]
    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012).
  70. [70]
    CMS collaboration, Search for the standard-model Higgs boson decaying to τ pairs in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-004 (2013).
  71. [71]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
  72. [72]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  73. [73]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jürgen Reuter
    • 1
  • Marco Tonini
    • 1
  • Maikel de Vries
    • 1
  1. 1.DESY Theory GroupHamburgGermany

Personalised recommendations