Journal of High Energy Physics

, 2013:139 | Cite as

Charged rotating AdS black hole and its thermodynamics in conformal gravity

  • Hai-Shan Liu
  • H. Lü


We obtain the charged rotating black hole in conformal gravity. The metric is asymptotic to the (anti-)de Sitter spacetime. The contribution to the metric from the charges has a slower falloff than that in the Kerr-Newman AdS black hole. We analyse the global structure and obtain all the thermodynamical quantities including the mass, angular momentum, electric/magnetic charges and their thermodynamical conjugates. We verify that the first law of thermodynamics holds. We also obtain the new neutral rotating black holes that are beyond Einstein metrics. In contrast to the static ones, these rotating black holes have no parameters associated with the massive spin-2 hair.


Black Holes Models of Quantum Gravity 


  1. [1]
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einsteins equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].MATHGoogle Scholar
  4. [4]
    S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    G. Gibbons, H. Lü, D.N. Page and C. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    G. Gibbons, H. Lü, D.N. Page and C. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93 (2004) 171102 [hep-th/0409155] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    W. Chen, H. Lü and C. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav. 23 (2006) 5323 [hep-th/0604125] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    E. Newman and A. Janis, Note on the Kerr spinning particle metric, J. Math. Phys. 6 (1965) 915 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  9. [9]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.-Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U(1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707 (2012) 286 [arXiv:1108.4159] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R.J. Riegert, Birkhoffs theorem in conformal gravity, Phys. Rev. Lett. 53 (1984) 315 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    H. Lü and C. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].
  18. [18]
    H. Lü and Z.-L. Wang, Exact Greens function and Fermi surfaces from conformal gravity, Phys. Lett. B 718 (2013) 1536 [arXiv:1210.4560] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Li, H.-S. Liu, H. Lü and Z.-L. Wang, Fermi surfaces and analytic Greens functions from conformal gravity, arXiv:1210.5000 [INSPIRE].
  20. [20]
    H. Lü, C. Pope, E. Sezgin and L. Wulff, Critical and non-critical Einstein-Weyl supergravity, JHEP 10 (2011) 131 [arXiv:1107.2480] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.S. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Le Du, Higher derivative supergravity in U(1) superspace, Eur. Phys. J. C 5 (1998) 181 [hep-th/9706058] [INSPIRE].ADSGoogle Scholar
  24. [24]
    H. Lü and Z.-L. Wang, Supersymmetric asymptotic AdS and Lifshitz solutions in Einstein-Weyl and conformal supergravities, JHEP 08 (2012) 012 [arXiv:1205.2092] [INSPIRE].Google Scholar
  25. [25]
    H.-S. Liu and H. Lü, Supersymmetry of the Schrödinger and PP wave solutions in Einstein-Weyl supergravities, Eur. Phys. J. C 72 (2012) 2125 [arXiv:1206.4371] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Lü and C.N. Pope, Gyrating Schrödinger geometries and non-relativistic field theories, Phys. Rev. D 86 (2012) 061501 [arXiv:1206.6510] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H.-S. Liu, H. Lü, Y. Pang and C. Pope, Supersymmetric solutions in four-dimensional off-shell curvature-squared supergravity, arXiv:1209.6065 [INSPIRE].
  28. [28]
    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.D.K. Chow, Single-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 032001 [arXiv:1011.2202] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.D.K. Chow, Two-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 175004 [arXiv:1012.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.-Q. Wu, General rotating charged Kaluza-Klein AdS black holes in higher dimensions, Phys. Rev. D 83 (2011) 121502 [arXiv:1108.4157] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P.D. Mannheim and D. Kazanas, Solutions to the Kerr and Kerr-Newman problems in fourth order conformal Weyl gravity, Phys. Rev. D 44 (1991) 417 [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    H. Lü, Y. Pang, C.N. Pope and J.F. Vazquez-Poritz, AdS and Lifshitz black holes in conformal and Einstein-Weyl gravities, Phys. Rev. D 86 (2012) 044011 [arXiv:1204.1062] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A.R. Gover and P. Nurowski, Obstructions to conformally Einstein metrics in n dimensions, math/0405304 [INSPIRE].
  35. [35]
    W. Chen and H. Lü, Kerr-Schild structure and harmonic 2-forms on (AydS-Kerr-NUT metrics, Phys. Lett. B 658 (2008) 158 [arXiv:0705.4471] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  37. [37]
    G. Gibbons, M. Perry and C. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  38. [38]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    A. Ashtekar and A. Magnon, Asymptotically Anti-de Sitter space-times, Class. Quant. Grav. 1 (1984) L39 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  42. [42]
    N. Okuyama and J.-i. Koga, Asymptotically Anti de Sitter spacetimes and conserved quantities in higher curvature gravitational theories, Phys. Rev. D 71 (2005) 084009 [hep-th/0501044] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Pang, Brief note on AMD conserved quantities in quadratic curvature theories, Phys. Rev. D 83 (2011) 087501 [arXiv:1101.4267] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute for Advanced Physics & MathematicsZhejiang University of TechnologyHangzhouChina
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations