Advertisement

Journal of High Energy Physics

, 2013:131 | Cite as

Five-dimensional topologically twisted maximally supersymmetric Yang-Mills theory

  • Louise Anderson
Article

Abstract

Herein, we consider a topologically twisted version of maximally supersymmetric Yang-Mills theory in five dimensions which was introduced by Witten in 2011. We consider this theory on a five manifold of the form M 4 × I for M 4 an oriented Riemannian four manifold. The complete and unique action of the theory in bulk is written down and is shown to be invariant under two scalar supersymmetries.

Keywords

Supersymmetric gauge theory Topological Field Theories 

References

  1. [1]
    E. Witten, Topological Quantum Field Theory, Comm. Math. Phys. 117 (1988) 353.MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    J.P. Yamron, Topological actions from twisted supersymmetric theories, Phys. Lett. B 213 (1988) 325 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    N. Marcus, The Other topological twisting of N = 4 Yang-Mills, Nucl. Phys. B 452 (1995) 331 [hep-th/9506002] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Witten, Fivebranes and Knots, arXiv:1101.3216 [INSPIRE].
  7. [7]
    M. Khovanov, A Categorification Of The Jones Polynomial, Duke. Math. J. 101 (2000) 359.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    E. Witten, Khovanov Homology And Gauge Theory, arXiv:1108.3103 [INSPIRE].
  9. [9]
    L. Anderson and M. Henningson, Tunneling Solutions in Topological Field Theory on \(\mathbb{R}\times {S^3}\times I\), JHEP 02 (2012) 063[arXiv:1112.2866][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Henningson, Boundary conditions for geometric- Langlands twisted N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 86 (2012) 085003 [arXiv:1106.3845] [INSPIRE].ADSGoogle Scholar
  11. [11]
    D. Gaiotto and E. Witten, Knot Invariants from Four-Dimensional Gauge Theory, arXiv:1106.4789 [INSPIRE].
  12. [12]
    M. Henningson, ’t Hooft Operators in the Boundary, Phys. Rev. D 84 (2011) 105032 [arXiv:1109.2393] [INSPIRE].ADSGoogle Scholar
  13. [13]
    V. Mikhaylov, On the Solutions of Generalized Bogomolny Equations, JHEP 05 (2012) 112 [arXiv:1202.4848] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP 09 (2005) 042 [hep-lat/0503039] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Ünsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089 [hep-th/0603046] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Fundamental PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations