Advertisement

Journal of High Energy Physics

, 2013:124 | Cite as

Anomalous zero sound

  • A. Gorsky
  • A. V. Zayakin
Article

Abstract

We show that the anomalous term in the current, recently suggested by Son and Yamamoto, modifies the structure of the zero sound mode in the Fermi liquid in a magnetic field.

Keywords

AdS-CFT Correspondence Nonperturbative Effects Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    L. Landau, The theory of a Fermi liquid, Zh. Eksp. Teor. Fiz. 30 (1956) 1058.Google Scholar
  2. [2]
    A. Karch, D. Son and A. Starinets, Zero sound from holography, arXiv:0806.3796 [INSPIRE].
  3. [3]
    D.T. Son and N. Yamamoto, Berry curvature, triangle anomalies and the chiral magnetic effect in Fermi liquids, Phys. Rev. Lett. 109 (2012) 181602 [arXiv:1203.2697] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H.-U. Yee, Holographic chiral magnetic conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Gorsky, P. Kopnin and A. Zayakin, On the chiral magnetic effect in soft-wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Buividovich, M. Chernodub, E. Luschevskaya and M. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V. Kirilin, Z. Khaidukov and A. Sadofyev, Chiral vortical effect in Fermi liquid, Phys. Lett. B 717 (2012) 447 [arXiv:1203.6612] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Zahed, Anomalous chiral Fermi surface, Phys. Rev. Lett. 109 (2012) 091603 [arXiv:1204.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Baym and S.A. Chin, Landau theory of relativistic Fermi liquids, Nucl. Phys. A 262 (1976) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Ammon et al., On stability and transport of cold holographic matter, JHEP 09 (2011) 030 [arXiv:1108.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Rebhan, A. Schmitt and S. Stricker, Holographic chiral currents in a magnetic field, Prog. Theor. Phys. Suppl. 186 (2010) 463 [arXiv:1007.2494] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Gorsky, P. Kopnin, A. Krikun and A. Vainshtein, More on the tensor response of the QCD vacuum to an external magnetic field, Phys. Rev. D 85 (2012) 086006 [arXiv:1201.2039] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D.E. Kharzeev and H.-U. Yee, Chiral helix in AdS/CFT with flavor, Phys. Rev. D 84 (2011) 125011 [arXiv:1109.0533] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Dipartimento di Fisica, Università di Perugia, INFN — Sezione di PerugiaPerugiaItaly

Personalised recommendations