Journal of High Energy Physics

, 2013:124 | Cite as

Anomalous zero sound

  • A. Gorsky
  • A. V. Zayakin


We show that the anomalous term in the current, recently suggested by Son and Yamamoto, modifies the structure of the zero sound mode in the Fermi liquid in a magnetic field.


AdS-CFT Correspondence Nonperturbative Effects Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    L. Landau, The theory of a Fermi liquid, Zh. Eksp. Teor. Fiz. 30 (1956) 1058.Google Scholar
  2. [2]
    A. Karch, D. Son and A. Starinets, Zero sound from holography, arXiv:0806.3796 [INSPIRE].
  3. [3]
    D.T. Son and N. Yamamoto, Berry curvature, triangle anomalies and the chiral magnetic effect in Fermi liquids, Phys. Rev. Lett. 109 (2012) 181602 [arXiv:1203.2697] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H.-U. Yee, Holographic chiral magnetic conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Gorsky, P. Kopnin and A. Zayakin, On the chiral magnetic effect in soft-wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Buividovich, M. Chernodub, E. Luschevskaya and M. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].ADSGoogle Scholar
  10. [10]
    V. Kirilin, Z. Khaidukov and A. Sadofyev, Chiral vortical effect in Fermi liquid, Phys. Lett. B 717 (2012) 447 [arXiv:1203.6612] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Zahed, Anomalous chiral Fermi surface, Phys. Rev. Lett. 109 (2012) 091603 [arXiv:1204.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Baym and S.A. Chin, Landau theory of relativistic Fermi liquids, Nucl. Phys. A 262 (1976) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Ammon et al., On stability and transport of cold holographic matter, JHEP 09 (2011) 030 [arXiv:1108.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Rebhan, A. Schmitt and S. Stricker, Holographic chiral currents in a magnetic field, Prog. Theor. Phys. Suppl. 186 (2010) 463 [arXiv:1007.2494] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Gorsky, P. Kopnin, A. Krikun and A. Vainshtein, More on the tensor response of the QCD vacuum to an external magnetic field, Phys. Rev. D 85 (2012) 086006 [arXiv:1201.2039] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D.E. Kharzeev and H.-U. Yee, Chiral helix in AdS/CFT with flavor, Phys. Rev. D 84 (2011) 125011 [arXiv:1109.0533] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Dipartimento di Fisica, Università di Perugia, INFN — Sezione di PerugiaPerugiaItaly

Personalised recommendations