Advertisement

Journal of High Energy Physics

, 2013:121 | Cite as

Nonlinear sigma models with AdS supersymmetry in three dimensions

  • Daniel Butter
  • Sergei M. Kuzenko
  • Gabriele Tartaglino-Mazzucchelli
Article

Abstract

In three-dimensional anti-de Sitter (AdS) space, there exist several realizations of \( \mathcal{N} \) -extended supersymmetry, which are traditionally labelled by two non-negative integers pq such that p + q = \( \mathcal{N} \). Different choices of p and q, with \( \mathcal{N} \) fixed, prove to lead to different restrictions on the target space geometry of supersymmetric nonlinear σ-models. We classify all possible types of hyperkähler target spaces for the cases \( \mathcal{N} \) = 3 and \( \mathcal{N} \) = 4 by making use of two different realizations for the most general (p, q) supersymmetric σ-models: (i) off-shell formulations in terms of \( \mathcal{N} \) = 3 and \( \mathcal{N} \) = 4 projective supermultiplets; and (ii) on-shell formulations in terms of covariantly chiral scalar superfields in (2,0) AdS superspace. Depending on the type of \( \mathcal{N} \) = 3, 4 AdS supersymmetry, nonlinear σ-models can support one of the following target space geometries: (i) hyperkähler cones; (ii) non-compact hyperkähler manifolds with a U(1) isometry group which acts non-trivially on the two-sphere of complex structures; (iii) arbitrary hyperkähler manifolds including compact ones. The option (iii) is realized only in the case of critical (4,0) AdS supersymmetry.

As an application of the (4,0) AdS techniques developed, we also construct the most general nonlinear σ-model in Minkowski space with a non-centrally extended \( \mathcal{N} \) = 4 Poincaré supersymmetry. Its target space is a hyperkähler cone (which is characteristic of \( \mathcal{N} \) = 4 superconformal σ-models), but the σ-model is massive. The Lagrangian includes a positive potential constructed in terms of the homothetic conformal Killing vector the target space is endowed with. This mechanism of mass generation differs from the standard one which corresponds to a σ-model with the ordinary \( \mathcal{N} \) = 4 Poincaré supersymmetry and which makes use of a tri-holomorphic Killing vector.

Keywords

Extended Supersymmetry Superspaces Sigma Models 

References

  1. [1]
    S.J. Gates Jr., C. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L. Álvarez-Gaumé and D.Z. Freedman, Geometrical Structure and Ultraviolet Finiteness in the Supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, A new maximally supersymmetric background of IIB superstring theory, JHEP 01 (2002) 047 [hep-th/0110242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Itzhaki, D. Kutasov and N. Seiberg, I-brane dynamics, JHEP 01 (2006) 119 [hep-th/0508025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014 [hep-th/0509235] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    J. Gomis, A.J. Salim and F. Passerini, Matrix theory of type IIB plane wave from membranes, JHEP 08 (2008) 002 [arXiv:0804.2186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Hosomichi, K.-M. Lee and S. Lee, Mass-deformed Bagger-Lambert theory and its BPS objects, Phys. Rev. D 78 (2008) 066015 [arXiv:0804.2519] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    E.A. Bergshoeff and O. Hohm, A topologically massive gauge theory with 32 supercharges, Phys. Rev. D 78 (2008) 125017 [arXiv:0810.0377] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Three-dimensional (p,q) AdS superspaces and matter couplings, JHEP 08 (2012) 024 [arXiv:1205.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ-models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Butter and S.M. Kuzenko, N = 2 supersymmetric σ-models in AdS, Phys. Lett. B 703 (2011) 620 [arXiv:1105.3111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D. Butter and S.M. Kuzenko, The structure of N = 2 supersymmetric nonlinear σ-models in AdS 4, JHEP 11 (2011) 080 [arXiv:1108.5290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Bagger and C. Xiong, AdS 5 supersymmetry in N = 1 superspace, JHEP 07 (2011) 119 [arXiv:1105.4852] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Bagger and J. Li, Supersymmetric nonlinear σ-model in AdS 5, Phys. Lett. B 702 (2011) 291 [arXiv:1106.2343] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    A. Achúcarro and P. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 467 (1996) 183 [hep-th/9505032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, IOP, Bristol U.K. (1998).MATHGoogle Scholar
  21. [21]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional N = 1 AdS superspace: geometry, off-shell multiplets and dynamics, Nucl. Phys. B 785 (2007) 34 [arXiv:0704.1185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Field theory in 4D N = 2 conformally flat superspace, JHEP 10 (2008) 001 [arXiv:0807.3368] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N = 2 (AdS) supergravity and associated supercurrents, JHEP 12 (2011) 052 [arXiv:1109.0496] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    B. Jia and E. Sharpe, Rigidly supersymmetric gauge theories on curved superspace, JHEP 04 (2012) 139 [arXiv:1109.5421] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in Lorentzian curved spaces and holography, arXiv:1207.2181 [INSPIRE].
  30. [30]
    E. Bergshoeff, S. Cecotti, H. Samtleben and E. Sezgin, Superconformal σ-models in three dimensions, Nucl. Phys. B 838 (2010) 266 [arXiv:1002.4411] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    U. Lindström and M. Roček, New hyperkähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    S.V. Ketov and I.V. Tyutin, Self-interaction for N = 2 multiplets in 4d and ultraviolet finiteness of two-dimensional N = 4 sigma-models (in Russian), in Proceedings of the International Seminar Group Theory Methods in Physics. Vol. 1, Urmala USSR (1985), M.A. Markov eds., Nauka, Moscow USSR (1986), pg. 87.Google Scholar
  35. [35]
    S.V. Ketov and B.B. Lokhvitsky, Some generalizations of N = 2 Yang-Mills matter couplings, Class. Quant. Grav. 4 (1987) L137 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Ketov, B. Lokhvitsky and I. Tyutin, Hyperkähler σ-models in extended superspace, Theor. Math. Phys. 71 (1987) 496 [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    A.A. Rosly, Super Yang-Mills constraints as integrability conditions (in Russian), in Proceedings of the International Seminar Group Theoretical Methods in Physics. Vol. 1, Zvenigorod USSR (1982), M.A. Markov eds., Nauka, Moscow USSR (1983), pg. 263. English translation in Group Theoretical Methods in Physics. Vol. 3, M.A. Markov, V.I. Man’ko and A.E. Shabad eds., Harwood Academic Publishers, London U.K. (1987), pg. 587.Google Scholar
  38. [38]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, Cambridge U.K. (2001).CrossRefMATHGoogle Scholar
  40. [40]
    S.M. Kuzenko, On compactified harmonic/projective superspace, 5 − D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S.M. Kuzenko, On superconformal projective hypermultiplets, JHEP 12 (2007) 010 [arXiv:0710.1479] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional superfield supergravity, Phys. Lett. B 661 (2008) 42 [arXiv:0710.3440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, 5D supergravity and projective superspace, JHEP 02 (2008) 004 [arXiv:0712.3102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 supergravity and projective superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Tartaglino-Mazzucchelli, 2D N = (4,4) superspace supergravity and bi-projective superfields, JHEP 04 (2010) 034 [arXiv:0911.2546] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    G. Tartaglino-Mazzucchelli, On 2D N = (4,4) superspace supergravity, Phys. Part. Nucl. Lett. 8 (2011) 251 [arXiv:0912.5300] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    I. Linch, William D. and G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.M. Kuzenko, N = 2 supersymmetric σ-models and duality, JHEP 01 (2010) 115 [arXiv:0910.5771] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    D. Butter, S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Extended supersymmetric σ-models in AdS 4 from projective superspace, JHEP 05 (2012) 138 [arXiv:1203.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Izquierdo and P. Townsend, Supersymmetric space-times in (2 + 1) AdS supergravity models, Class. Quant. Grav. 12 (1995) 895 [gr-qc/9501018] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  54. [54]
    N. Deger, A. Kaya, E. Sezgin and P. Sundell, Matter coupled AdS 3 supergravities and their black strings, Nucl. Phys. B 573 (2000) 275 [hep-th/9908089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys. B 568 (2000) 475 [hep-th/9909228] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, JHEP 12 (2011) 042 [arXiv:1104.3155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    S.J. Gates Jr. and S.M. Kuzenko, The CNM hypermultiplet nexus, Nucl. Phys. B 543 (1999) 122 [hep-th/9810137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    S.J. Gates Jr. and S.M. Kuzenko, 4D N = 2 supersymmetric off-shell σ-models on the cotangent bundles of Kähler manifolds, Fortsch. Phys. 48 (2000) 115 [hep-th/9903013] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  59. [59]
    S.M. Kuzenko, Comments on N = 2 supersymmetric σ-models in projective superspace, J. Phys. A 45 (2012) 095401 [arXiv:1110.4298] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    S.M. Kuzenko, Projective superspace as a double punctured harmonic superspace, Int. J. Mod. Phys. A 14 (1999) 1737 [hep-th/9806147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    B. Zupnik, Three-dimensional \( \mathcal{N} \) = 4 supersymmetry in harmonic \( \mathcal{N} \) = 3 superspace, Theor. Math. Phys. 165 (2010) 1315 [arXiv:1005.4750] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    J.A. Bagger, Supersymmetric sigma models, lectures given at the 1984 NATO Advanced Study Institute on Supersymmetry, Bonn Germany (1984). Reprinted in Supergravities in Diverse Dimensions. Vol. 1, A. Salam and E. Sezgin eds., North-Holland/World Scientific, Amsterdam The Netherlands (1989), pg. 569.Google Scholar
  63. [63]
    B. de Wit, A. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L. Álvarez-Gaumé and D.Z. Freedman, Potentials for the Supersymmetric Nonlinear σ-model, Commun. Math. Phys. 91 (1983) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.P. Gauntlett, D. Tong and P.K. Townsend, Supersymmetric intersecting domain walls in massive hyperKähler σ-models, Phys. Rev. D 63 (2001) 085001 [hep-th/0007124] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    M. Arai, E. Ivanov and J. Niederle, Massive nonlinear σ-models and BPS domain walls in harmonic superspace, Nucl. Phys. B 680 (2004) 23 [hep-th/0312037] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    J. Bagger and C. Xiong, N = 2 nonlinear σ-models in N = 1 superspace: four and five dimensions, hep-th/0601165 [INSPIRE].
  68. [68]
    S.M. Kuzenko, On superpotentials for nonlinear σ-models with eight supercharges, Phys. Lett. B 638 (2006) 288 [hep-th/0602050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    B. de Wit, M. Roček and S. Vandoren, Hypermultiplets, hyperKähler cones and quaternion Kähler geometry, JHEP 02 (2001) 039 [hep-th/0101161] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    G. Gibbons and P. Rychenkova, Cones, triSasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138 [hep-th/9809158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Different representations for the action principle in 4D N = 2 supergravity, JHEP 04 (2009) 007 [arXiv:0812.3464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Daniel Butter
    • 1
    • 2
  • Sergei M. Kuzenko
    • 1
  • Gabriele Tartaglino-Mazzucchelli
    • 1
  1. 1.School of Physics M013The University of Western AustraliaCrawleyAustralia
  2. 2.Nikhef Theory GroupAmsterdamThe Netherlands

Personalised recommendations