Advertisement

Journal of High Energy Physics

, 2013:91 | Cite as

NLO QCD corrections to tW and tZ production in forward-backward asymmetry models

  • J. Adelman
  • J. Ferrando
  • C. D. White
Article

Abstract

We consider Z and W models recently proposed to explain the top forward-backward asymmetry at the Tevatron. We present the next-to-leading order QCD corrections to associated production of such vector bosons together with top quarks at the Large Hadron Collider, for centre-of-mass energies of 7 and 8 TeV. The corrections are significant, modifying the total production cross-section by 30-50%. We consider the effects of the corrections on the top and vector-boson kinematics. The results are directly applicable to current experimental searches, for both the ATLAS and CMS collaborations.

Keywords

NLO Computations 

Supplementary material

13130_2013_5620_MOESM1_ESM.pdf (279 kb)
ESM 1 Supplementary material

References

  1. [1]
    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold resummation for the top quark charge asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [INSPIRE].ADSGoogle Scholar
  3. [3]
    N. Kidonakis, The top quark rapidity distribution and forward-backward asymmetry, Phys. Rev. D 84 (2011) 011504 [arXiv:1105.5167] [INSPIRE].ADSGoogle Scholar
  4. [4]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D 84 (2011) 074004 [arXiv:1106.6051] [INSPIRE].ADSGoogle Scholar
  5. [5]
    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A.V. Manohar and M. Trott, Electroweak Sudakov corrections and the top quark forward-backward asymmetry, Phys. Lett. B 711 (2012) 313 [arXiv:1201.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Halzen, P. Hoyer and C. Kim, Forward-backward asymmetry of hadroproduced heavy quarks in QCD, Phys. Lett. B 195 (1987) 74 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D0 collaboration, V. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Cheung and T.-C. Yuan, Top quark forward-backward asymmetry in the large invariant mass region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [INSPIRE].ADSGoogle Scholar
  14. [14]
    V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron asymmetry of tops in a W’,Zmodel, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Craig, C. Kilic and M.J. Strassler, LHC charge asymmetry as constraint on models for the Tevatron top anomaly, Phys. Rev. D 84 (2011) 035012 [arXiv:1103.2127] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C.-H. Chen, S.S. Law and R.-H. Li, Rare B decays and Tevatron top-pair asymmetry, J. Phys. G 38 (2011) 115008 [arXiv:1104.1497] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Yan, J. Wang, D.Y. Shao and C.S. Li, Next-to-leading order QCD effect of W on top quark forward-backward asymmetry, Phys. Rev. D 85 (2012) 034020 [arXiv:1110.6684] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Knapen, Y. Zhao and M.J. Strassler, Diagnosing the top-quark angular asymmetry using LHC intrinsic charge asymmetries, Phys. Rev. D 86 (2012) 014013 [arXiv:1111.5857] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Xiao, Y.-k. Wang and S.-h. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Zmodel at \( O\left( {\alpha_s^2{\alpha_X}} \right) \), Phys. Rev. D 82 (2010) 034026 [arXiv:1006.2510] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, Phys. Rev. D 84 (2011) 074001 [arXiv:1101.4456] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top quark forward-backward asymmetry and same-sign top quark pairs, Phys. Rev. Lett. 106 (2011) 201801 [arXiv:1101.5625] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: constraints on extended models and implications for the \( t\overline{t} \) asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D.-W. Jung, P. Ko and J.S. Lee, Possible common origin of the top forward-backward asymmetry and the CDF dijet resonance, Phys. Rev. D 84 (2011) 055027 [arXiv:1104.4443] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Duraisamy, A. Rashed and A. Datta, The top forward backward asymmetry with general Zcouplings, Phys. Rev. D 84 (2011) 054018 [arXiv:1106.5982] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Ko, Y. Omura, and C. Yu, Top forward-backward asymmetry in chiral U(1) models, Nuovo Cim. C035N3 (2012) 245.Google Scholar
  27. [27]
    P. Ko, Y. Omura and C. Yu, Top forward-backward asymmetry and the CDF W jj excess in leptophobic U(1) flavor models, Phys. Rev. D 85 (2012) 115010 [arXiv:1108.0350] [INSPIRE].ADSGoogle Scholar
  28. [28]
    E.L. Berger, Tevatron top quark forward-backward asymmetryImplications for same-sign top quark pair production, arXiv:1109.3202 [INSPIRE].
  29. [29]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Searching for top flavor violating resonances, Phys. Rev. D 84 (2011) 034025 [arXiv:1102.0018] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Duffty, Z. Sullivan and H. Zhang, Top quark forward-backward asymmetry and W bosons, Phys. Rev. D 85 (2012) 094027 [arXiv:1203.4489] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.Y. Ayazi, S. Khatibi and M. Mohammadi Najafabadi, Top quark forward-backward asymmetry and W -boson with general couplings, JHEP 10 (2012) 103 [arXiv:1205.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y. Zhang, S.-Z. Jiang and Q. Wang, The global electroweak fit and its implication to Z , arXiv:1205.3567 [INSPIRE].
  33. [33]
    J. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: constraints and predictions, JHEP 09 (2011) 097 [arXiv:1107.0841] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Jung, A. Pierce and J.D. Wells, Top asymmetry and the search for a light hadronic resonance in association with single top, Phys. Rev. D 84 (2011) 091502 [arXiv:1108.1802] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E.L. Berger, Q.-H. Cao, J.-H. Yu and C.-P. Yuan, Calculation of associated production of a top quark and a W at the LHC, Phys. Rev. D 84 (2011) 095026 [arXiv:1108.3613] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Cao, K. Hikasa, L. Wang, L. Wu and J.M. Yang, Testing new physics models by top charge asymmetry and polarization at the LHC, Phys. Rev. D 85 (2012) 014025 [arXiv:1109.6543] [INSPIRE].ADSGoogle Scholar
  37. [37]
    T. Jezo, M. Klasen and I. Schienbein, LHC phenomenology of general SU(2) × SU(2) × U(1) models, Phys. Rev. D 86 (2012) 035005 [arXiv:1203.5314] [INSPIRE].ADSGoogle Scholar
  38. [38]
    Q.-H. Cao, Z. Li, J.-H. Yu and C. Yuan, Discovery and identification of W and Zin SU(2) × SU(2) × U(1) models at the LHC, Phys. Rev. D 86 (2012) 095010 [arXiv:1205.3769] [INSPIRE].ADSGoogle Scholar
  39. [39]
    (ed.), Precision electroweak measurements and constraints on the standard model, CERN-PH-EP-2010-095 (2010).
  40. [40]
    I. Altarev, Y. Borisov, N. Borovikova, S. Ivanov, E. Kolomensky, et al., New measurement of the electric dipole moment of the neutron, Phys. Lett. B 276 (1992) 242 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    I. Altarev, Y. Borisov, N. Borovikova, A. Egorov, S. Ivanov, et al., Search for the neutron electric dipole moment, Phys. Atom. Nucl. 59 (1996) 1152 [INSPIRE].ADSGoogle Scholar
  42. [42]
    CMS collaboration, Search for same-sign top-quark pair production at \( \sqrt{s}=7 \) TeV and limits on flavour changing neutral currents in the top sector, JHEP 08 (2011) 005 [arXiv:1106.2142] [INSPIRE].ADSGoogle Scholar
  43. [43]
    ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D0 collaboration, V.M. Abazov et al., Measurement of the \( t\overline{t} \) production cross section using dilepton events in \( p\overline{p} \) collisions, Phys. Lett. B 704 (2011) 403 [arXiv:1105.5384] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    CDF collaboration, T. Aaltonen et al., Measurement of the top pair production cross section in the lepton + jets channel using a jet flavor discriminant, Phys. Rev. D 84 (2011) 031101 [arXiv:1103.4821] [INSPIRE].ADSGoogle Scholar
  46. [46]
    CMS collaboration, Measurement of the top quark pair production cross section in pp collisions at \( \sqrt{s}=7 \) TeV in dilepton final states containing a τ, Phys. Rev. D 85 (2012) 112007 [arXiv:1203.6810] [INSPIRE].ADSGoogle Scholar
  47. [47]
    ATLAS collaboration, Measurement of the top quark pair cross section with ATLAS in pp collisions at \( \sqrt{s}=7 \) TeV using final states with an electron or a muon and a hadronically decaying τ lepton, Phys. Lett. B 717 (2012) 89 [arXiv:1205.2067] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CMS collaboration, Measurement of the charge asymmetry in top-quark pair production in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 709 (2012) 28 [arXiv:1112.5100] [INSPIRE].ADSGoogle Scholar
  49. [49]
    ATLAS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2039 [arXiv:1203.4211] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Chakrabortty, J. Gluza, R. Sevillano and R. Szafron, Left-right symmetry at LHC and precise 1-loop low energy data, JHEP 07 (2012) 038 [arXiv:1204.0736] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    CDF collaboration, T. Aaltonen et al., Search for a heavy particle decaying to a top quark and a light quark in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 108 (2012) 211805 [arXiv:1203.3894] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    CMS collaboration, Search for charge-asymmetric production of Wbosons in top pair + jet events from pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 717 (2012) 351 [arXiv:1206.3921] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T.M. Tait, The tW mode of single top production, Phys. Rev. D 61 (2000) 034001 [hep-ph/9909352] [INSPIRE].ADSGoogle Scholar
  54. [54]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Zhu, Next-to-leading order QCD corrections to BgtW at the CERN large hadron collider, Phys. Lett. B 524 (2002) 283 [Erratum ibid. B 537 (2002) 351-352] [INSPIRE].
  56. [56]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C. Weydert, S. Frixione, M. Herquet, M. Klasen, E. Laenen, et al., Charged Higgs boson production in association with a top quark in MC@NLO, Eur. Phys. J. C 67 (2010) 617 [arXiv:0912.3430] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.C. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev. D 18 (1978) 242 [INSPIRE].ADSGoogle Scholar
  59. [59]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Belyaev, E. Boos and L. Dudko, Single top quark at future hadron colliders: complete signal and background study, Phys. Rev. D 59 (1999) 075001 [hep-ph/9806332] [INSPIRE].ADSGoogle Scholar
  61. [61]
    N. Kauer and D. Zeppenfeld, Finite width effects in top quark production at hadron colliders, Phys. Rev. D 65 (2002) 014021 [hep-ph/0107181] [INSPIRE].ADSGoogle Scholar
  62. [62]
    B.P. Kersevan and I. Hinchliffe, A consistent prescription for the production involving massive quarks in hadron collisions, JHEP 09 (2006) 033 [hep-ph/0603068] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C.D. White, S. Frixione, E. Laenen and F. Maltoni, Isolating Wt production at the LHC, JHEP 11 (2009) 074 [arXiv:0908.0631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    E. Re, Single-top wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Frixione, Colourful FKS subtraction, JHEP 09 (2011) 091 [arXiv:1106.0155] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Catani and M. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
  69. [69]
    C. Chung, M. Krämer and T. Robens, An alternative subtraction scheme for next-to-leading order QCD calculations, JHEP 06 (2011) 144 [arXiv:1012.4948] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for top-jet resonances in the lepton+jets channel of \( t\overline{t} \)+ jets events with the ATLAS detector in 4.7 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-096 (2012).
  75. [75]
    ATLAS collaboration, Search for resonant top plus jet production in \( t\overline{t} \)+ jets events with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 86 (2012) 091103 [arXiv:1209.6593] [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    K. Arnold, L. d’Errico, S. Gieseke, D. Grellscheid, K. Hamilton, et al., HERWIG++ 2.6 release note, arXiv:1205.4902 [INSPIRE].
  78. [78]
    M. Endo and S. Iwamoto, Comment on the CMS search for charge-asymmetric production of Wboson in \( t\overline{t} \)+ jet events, Phys. Lett. B 718 (2013) 1070 [arXiv:1207.5900] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsYale UniversityNew HavenU.S.A.
  2. 2.School of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations