Journal of High Energy Physics

, 2013:35 | Cite as

The intersection numbers of the p-spin curves from random matrix theory

  • E. Brézin
  • S. Hikami
Open Access


The intersection numbers of p-spin curves are computed through correlation functions of Gaussian ensembles of random matrices in an external matrix source. The p-dependence of intersection numbers is determined as polynomial in p; the large p behavior is also considered. The analytic continuation of intersection numbers to negative values of p is discussed in relation to SL(2,R)/U(1) black hole sigma model.


Matrix Models Random Systems Topological Field Theories 


  1. [1]
    M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys. 147 (1992) 1 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, The N matrix model and gauged WZW models, Nucl. Phys. B 371 (1992) 191 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Algebraic geometry associated with matrix models of two dimensional gravity, in Topological methods in modern mathematics, J. Willard Milnor et al. eds., Publish or Perish Inc., U.S.A. (1993).Google Scholar
  4. [4]
    A. Okounkov, Generating functions for intersection numbers on moduli spaces of curves, Int. Math. Res. Not. 18 (2002) 933 [math/0101201].MathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Brézin and S. Hikami, Vertices from replica in a random matrix theory, J. Phys A 40 (2007) 13545 [arXiv:0704.2044].ADSGoogle Scholar
  6. [6]
    E. Brézin and S. Hikami, Intersection theory from duality and replica, Commun. Math. Phys. 283 (2008) 507 [arXiv:0708.2210] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    E. Brézin and S. Hikami, Intersection numbers of Riemann surfaces from Gaussian matrix models, JHEP 10 (2007) 096 [arXiv:0709.3378] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    E. Witten, Nonabelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  10. [10]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    T.J. Jarvis, Geometry of the moduli of higher spin curves, Int. J. Math. 11 (2000) 637 [math/9809138].MathSciNetMATHGoogle Scholar
  12. [12]
    A. Chiodo, Stable twisted curves and their r-spin structures, Ann. I. Fourier 58 (2008) 1635 [math/0603687].MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    C. Faber, S. Shadrin and D. Zvonkine, Tautological relations and the r-spin Witten conjecture, Ann. Sci. École Norm. Supér. 43 (2010) 621 [math/0612510].MathSciNetMATHGoogle Scholar
  14. [14]
    K. Liu and H. Xu, Descendent integrals and tautological rings of moduli spaces of curves, Adv. Lect. Math. 18 (2010) 137 [arXiv:0912.0584].Google Scholar
  15. [15]
    K. Liu, R. Vakil and H. Xu, Formal pseudodifferential operators and Wittens r-spin numbers, arXiv:1112.4601.
  16. [16]
    T. Kimura and X. Liu, A genus-3 topological recursion relation, Comm. Math. Phys. 262 (2006) 645 [math/0502457].MathSciNetADSCrossRefMATHGoogle Scholar
  17. [17]
    E. Brézin and S. Hikami, Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev. B 57 (1998) 4140 [cond-mat/9804023].ADSGoogle Scholar
  18. [18]
    E. Brézin and S. Hikami, Level spacing of random matrices in an external source, Phys. Rev. E 58 (1998) 7176 [cond-mat/9804024].ADSGoogle Scholar
  19. [19]
    E. Brézin and S. Hikami, Computing topological invariants with one and two-matrix models, JHEP 04 (2009) 110 [arXiv:0810.1085] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Brézin and S. Hikami, Extension of level-spacing universality, Phys. Rev. E 56 (1997) 264 [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457.MathSciNetADSCrossRefMATHGoogle Scholar
  22. [22]
    R.C. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Diff. Geom. 27 (1988) 35.MathSciNetMATHGoogle Scholar
  23. [23]
    G. Bini and J. Harer, Euler characteristics of moduli spaces of curves, J. Eur. Math. Soc. 13 (2011) 487 [math/0506083].MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    C. Kounnas and D. Lüst, Cosmological string backgrounds from gauged WZW models, Phys. Lett. B 289 (1992) 56 [hep-th/9205046] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Hanany, N. Prezas and J. Troost, The partition function of the two-dimensional black hole conformal field theory, JHEP 04 (2002) 014 [hep-th/0202129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2, \( \mathbb{R} \)) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  27. [27]
    E. Brézin and S. Hikami, Duality and replicas for a unitary matrix model, JHEP 07 (2010) 067 [arXiv:1005.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Ikhlef, J.L. Jacobsen and H. Saleur, An integrable spin chain for the SL(2, R)/U(1) black hole σ-model, Phys. Rev. Lett. 108 (2012) 081601 [arXiv:1109.1119] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueEcole Normale SupérieureParis Cedex 05France
  2. 2.Mathematical and Theoretical Physics UnitOIST Graduate UniversityOkinawaJapan

Personalised recommendations