Journal of High Energy Physics

, 2013:25 | Cite as

Multiple CP non-conserving mechanisms of (ββ)0ν -decay and nuclei with largely different nuclear matrix elements

  • A. Meroni
  • S. T. Petcov
  • F. Šimkovic


We investigate the possibility to discriminate between different pairs of CP non-conserving mechanisms inducing the neutrinoless double beta (ββ)0ν -decay by using data on (ββ)0ν -decay half-lives of nuclei with largely different nuclear matrix elements (NMEs). The mechanisms studied are: light Majorana neutrino exchange, heavy left-handed (LH) and heavy right-handed (RH) Majorana neutrino exchanges, lepton charge non-conserving couplings in SUSY theories with R-parity breaking giving rise to the “dominant gluino exchange” and the “squark-neutrino” mechanisms. The nuclei considered are 76Ge, 82Se, 100Mo, 130Te and 136Xe. Four sets of nuclear matrix elements (NMEs) of the decays of these five nuclei, derived within the Self-consistent Renormalized Quasiparticle Random Phase Approximation (SRQRPA), were employed in our analysis. While for each of the five single mechanisms discussed, the NMEs for 76Ge, 82Se, 100Mo and 130Te differ relatively little, the relative difference between the NMEs of any two nuclei not exceeding 10%, the NMEs for 136 Xe differ significantly from those of 76Ge, 82 Se, 100Mo and 130Te, being by a factor ~ (1.3 − 2.5) smaller. This allows, in principle, to draw conclusions about the pair of non-interfering (interfering) mechanisms possibly inducing the (ββ)0ν -decay from data on the half-lives of 136 Xe and of at least one (two) more isotope(s) which can be, e.g., any of the four, 76 Ge, 82 Se, 100 Mo and 130 Te. Depending on the sets of mechanisms considered, the conclusion can be independent of, or can depend on, the NMEs used in the analysis. The implications of the EXO lower bound on the half-life of 136 Xe for the problem studied are also exploited.


Beyond Standard Model Neutrino Physics CP violation Standard Model 


  1. [1]
    A. Faessler, A. Meroni, S. Petcov, F. Simkovic and J. Vergados, Uncovering multiple CP-nonconserving mechanisms of (ββ)0ν-decay, Phys. Rev. D 83 (2011) 113003 [arXiv:1103.2434] [INSPIRE].ADSGoogle Scholar
  2. [2]
    F. Simkovic, J. Vergados and A. Faessler, Few active mechanisms of the neutrinoless double β-decay and effective mass of Majorana neutrinos, Phys. Rev. D 82 (2010) 113015 [arXiv:1006.0571] [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.M. Bilenky and S.T. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671.ADSCrossRefGoogle Scholar
  4. [4]
    S.M. Bilenky, S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta decay. 1. The three neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  6. [6]
    W. Rodejohann, Neutrino-less double β decay and particle physics, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Halprin, S. Petcov and S.P. Rosen, Effects of light and heavy Majorana neutrinos in neutrinoless double β decay, Phys. Lett. B 125 (1983) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Deppisch and H. Pas, Pinning down the mechanism of neutrinoless double beta decay with measurements in different nuclei, Phys. Rev. Lett. 98 (2007) 232501 [hep-ph/0612165] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V. Gehman and S. Elliott, Multiple-isotope comparison for determining 0νββ mechanisms, J. Phys. G 34 (2007) 667 [Erratum ibid. G 35 (2008) 029701] [hep-ph/0701099] [INSPIRE].
  10. [10]
    G. Fogli, E. Lisi and A. Rotunno, Probing particle and nuclear physics models of neutrinoless double β decay with different nuclei, Phys. Rev. D 80 (2009) 015024 [arXiv:0905.1832] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, Towards a superformula for neutrinoless double β decay, Phys. Lett. B 453 (1999) 194 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, A superformula for neutrinoless double beta decay. 2. The short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Delion, J. Dukelsky and P. Schuck, Restoration of the Ikeda sum rule in selfconsistent quasiparticle random-phase approximation, Phys. Rev. C 55 (1997) 2340 [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Krmpotić et al., Self-consistent random phase approximation within the O(5) model and Fermi transitions, Nucl. Phys. A 637 (1998) 295.ADSCrossRefGoogle Scholar
  15. [15]
    F. Šimkovic, A. Faessler and P. Vogel, 0νββ nuclear matrix elements and the occupancy of individual orbits, Phys. Rev. C 79 (2009) 015502 [arXiv:0812.0348] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Faessler, G. Fogli, E. Lisi, A. Rotunno and F. Simkovic, Multi-isotope degeneracy of neutrinoless double β decay mechanisms in the quasi-particle random phase approximation, Phys. Rev. D 83 (2011) 113015 [arXiv:1103.2504] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Faessler, T. Gutsche, S. Kovalenko and F. Simkovic, Pion dominance in RPV SUSY induced neutrinoless double β decay, Phys. Rev. D 77 (2008) 113012 [arXiv:0710.3199] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V. Rodin, A. Faessler, F. Simkovic and P. Vogel, On the uncertainty in the 0νββ decay nuclear matrix elements, Phys. Rev. C 68 (2003) 044302 [nucl-th/0305005] [INSPIRE].ADSGoogle Scholar
  19. [19]
    V. Rodin, A. Faessler, F. Simkovic and P. Vogel, Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements, Nucl. Phys. A 766 (2006) 107 [Erratum ibid. A 793 (2007) 213-215] [arXiv:0706.4304] [INSPIRE].
  20. [20]
    V. Rodin, A. Faessler, F. Simkovic and P. Vogel, Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements, Nucl. Phys. A 766 (2006) 107 [Erratum ibid. A 793 (2007) 213-215] [arXiv:0706.4304] [INSPIRE].
  21. [21]
    M. Cheoun, A. Bobyk, A. Faessler, F. Simkovic and G. Teneva, Neutron proton pairing in light nuclei and two neutrino double β decay, Nucl. Phys. A 561 (1993) 74 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Simkovic, A. Faessler, V. Rodin, P. Vogel and J. Engel, Anatomy of nuclear matrix elements for neutrinoless double-β decay, Phys. Rev. C 77 (2008) 045503 [arXiv:0710.2055] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Simkovic, A. Faessler, H. Müther, V. Rodin and M. Stauf, The 0νββ-decay nuclear matrix elements with self-consistent short-range correlations, Phys. Rev. C 79 (2009) 055501 [arXiv:0902.0331] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.D. Vergados, H. Ejiri and F. Šimkovic, Theory of neutrinoless double-β decay, Rep. Prog. Phys. 75 (2012) 106301.ADSCrossRefGoogle Scholar
  25. [25]
    EXO collaboration, M. Auger et al., Search for Neutrinoless double-β decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Baudis et al., Limits on the Majorana neutrino mass in the 0.1 eV range, Phys. Rev. Lett. 83 (1999) 41 [hep-ex/9902014] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    NEMO collaboration, A. Barabash and V. Brudanin, Investigation of double beta decay with the NEMO-3 detector, Phys. Atom. Nucl. 74 (2011) 312 [arXiv:1002.2862] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0νββ-decay of Te-130, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H.V. Klapdor-Kleingrothaus and I. Krivosheina, The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H.V. Klapdor-Kleingrothaus, I. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double β decay with enriched Ge-76 in Gran Sasso 19902003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H.V. Klapdor-Kleingrothaus, A. Dietz, H. Harney and I. Krivosheina, Evidence for neutrinoless double β decay, Mod. Phys. Lett. A 16 (2001) 2409 [hep-ph/0201231] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Lobashev, The search for the neutrino mass by direct method in the tritium β-decay and perspectives of study it in the project KATRIN, Nucl. Phys. A 719 (2003) 153 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Eitel, Direct neutrino mass experiments, Nucl. Phys. Proc. Suppl. 143 (2005) 197 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.SISSATriesteItaly
  2. 2.INFN — Sezione di TriesteTriesteItaly
  3. 3.Kavli IPMU (WPI)The University of TokyoKashiwaJapan
  4. 4.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia
  5. 5.Bogoliubov Laboratory of Theoretical Physics, JINRDubnaRussia
  6. 6.Institute of Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations