Advertisement

Journal of High Energy Physics

, 2012:141 | Cite as

Real-virtual corrections for gluon scattering at NNLO

  • Aude Gehrmann-De Ridder
  • E. W. N. Glover
  • Joao Pires
Article

Abstract

We use the antenna subtraction method to isolate the mixed real-virtual infrared singularities present in gluonic scattering amplitudes at next-to-next-to-leading order. In a previous paper, we derived the subtraction term that rendered the double real radiation tree-level process finite in the single and double unresolved regions of phase space. Here, we show how to construct the real-virtual subtraction term using antenna functions with both initial- and final-state partons which removes the explicit infrared poles present in the one-loop amplitude, as well as the implicit singularities that occur in the soft and collinear limits. As an explicit example, we write down the subtraction term that describes the single unresolved contributions from the five-gluon one-loop process. The infrared poles are explicitly and locally cancelled in all regions of phase space prior to integration, leaving a finite remainder that can be safely evaluated numerically in four-dimensions. We show numerically that the subtraction term correctly approximates the matrix elements in the various single unresolved configurations.

Keywords

Jets Hadronic Colliders QCD 

References

  1. [1]
    S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order \( \alpha_S^3 \) : gluons only, Phys. Rev. Lett. 62 (1989) 726 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order \( \$ \alpha_s^3 \) quarks and gluons, Phys. Rev. Lett. 64 (1990) 2121 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order \( \alpha_S^3 \) in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Giele, E. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    W. Giele, E. Glover and D.A. Kosower, The two-jet differential cross section at \( \mathcal{O}\left( {\alpha_s^3} \right) \) in hadron collisions, Phys. Rev. Lett. 73 (1994) 2019 [hep-ph/9403347] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CDF-Run II collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section using the k T algorithmin p \( \overline p \) collisions at \( \sqrt {s} \) = 1.96 TeV with the CDF II detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid. D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].
  8. [8]
    D0 collaboration, V. Abazov et al., Measurement of the inclusive jet cross-section in p \( \overline p \) collisions at s (1/2) = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab Tevatron p \( \overline p \) collider using a cone-based jet algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].
  10. [10]
    ATLAS collaboration, G. Aad et al., Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1512 [arXiv:1009.5908] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Measurement of the inclusive jet cross section in pp collisions at \( \sqrt {s} \) = 7 TeV, Phys. Rev. Lett. 107 (2011) 132001 [arXiv:1106.0208] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Giele, E. Glover and J. Yu, The determination of α s at hadron colliders, Phys. Rev. D 53 (1996) 120 [hep-ph/9506442] [INSPIRE].ADSGoogle Scholar
  13. [13]
    CDF collaboration, T. Affolder et al., Measurement of the strong coupling constant from inclusive jet production at the Tevatron \( \overline p \) p collider, Phys. Rev. Lett. 88 (2002) 042001 [hep-ex/0108034] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D0 collaboration, V. Abazov et al., Determination of the strong coupling constant from the inclusive jet cross section in ppbar collisions at \( \sqrt {s} \) = 1.96 TeV, Phys. Rev. D 80 (2009) 111107 [arXiv:0911.2710] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E. Glover, Progress in NNLO calculations for scattering processes, Nucl. Phys. Proc. Suppl. 116 (2003) 3 [hep-ph/0211412] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
  17. [17]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Z. Nagy and Z. Trócsányi, Calculation of QCD jet cross-sections at next-to-leading order, Nucl. Phys. B 486 (1997) 189 [hep-ph/9610498] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Somogyi and Z. Trócsányi, A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, hep-ph/0609041 [INSPIRE].
  21. [21]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    W.B. Kilgore, Subtraction terms for hadronic production processes at next-to-next-to-leading order, Phys. Rev. D 70 (2004) 031501 [hep-ph/0403128] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Somogyi and Z. Trócsányi, A Subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I, JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I, JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Somogyi, Subtraction with hadronic initial states at NLO: An NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II., JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, arXiv:1110.2368 [INSPIRE].
  37. [37]
    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, arXiv:1111.7041 [INSPIRE].
  38. [38]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ →4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, arXiv:1110.2375 [INSPIRE].
  44. [44]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    T. Binoth and G. Heinrich, Numerical evaluation of multiloop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Heinrich, A numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl. 116 (2003) 368 [hep-ph/0211144] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  49. [49]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Heinrich, The sector decomposition approach to real radiation at NNLO, Nucl. Phys. Proc. Suppl. 157 (2006) 43 [hep-ph/0601232] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e + e → 2 jets through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 93 (2004) 032002 [hep-ph/0402280] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Weinzierl, The Infrared structure of e + e → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO moments of event shapes in e + e annihilation, JHEP 05 (2009) 106 [arXiv:0903.4658] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Jet rates in electron-positron annihilation at \( O\left( {\alpha_s^3} \right) \) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Weinzierl, Jet algorithms in electron-positron annihilation: Perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [Erratum ibid. C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].
  68. [68]
    A. Gehrmann-De Ridder and M. Ritzmann, NLO antenna subtraction with massive fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function for \( S \to Q\overline Q q\overline q \) at NNLO QCD,JHEP 06(2011) 032 [arXiv:1105.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSGoogle Scholar
  77. [77]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].ADSGoogle Scholar
  78. [78]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].ADSGoogle Scholar
  80. [80]
    D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys. B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  85. [85]
    S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].ADSGoogle Scholar
  86. [86]
    D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67 (2003) 116003 [hep-ph/0212097] [INSPIRE].ADSGoogle Scholar
  87. [87]
    D.A. Kosower, All orders singular emission in gauge theories, Phys. Rev. Lett. 91 (2003) 061602 [hep-ph/0301069] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  88. [88]
    S. Weinzierl, Subtraction terms for one loop amplitudes with one unresolved parton, JHEP 07 (2003) 052 [hep-ph/0306248] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    S. Badger and E. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    W.A. Bardeen, A. Buras, D. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  93. [93]
    D. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    H. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    D. Jones, Two loop diagrams in Yang-Mills theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys. Lett. B 97 (1980) 437 [INSPIRE].ADSGoogle Scholar
  100. [100]
    E. Floratos, D. Ross and C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: the anomalous dimensions of Wilson operators, Nucl. Phys. B 129 (1977) 66 [Erratum ibid. B 139 (1978) 545-546] [INSPIRE].
  101. [101]
    E. Floratos, D. Ross and C.T. Sachrajda, Higher order effects in asymptotically free gauge theories. 2. Flavor singlet Wilson operators and coefficient functions, Nucl. Phys. B 152 (1979) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    F.A. Berends and W. Giele, The six gluon process as an example of Weyl-Van Der Waerden spinor calculus, Nucl. Phys. B 294 (1987) 700 [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    D. Kosower, B.-H. Lee and V. Nair, Multi gluon scattering: a string based calculation, Phys. Lett. B 201 (1988) 85 [INSPIRE].MathSciNetADSGoogle Scholar
  104. [104]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    R. Kleiss, W. Stirling and S. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSGoogle Scholar
  110. [110]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    J. Pires and E. Glover, Double real radiation corrections to gluon scattering at NNLO, Nucl. Phys. Proc. Suppl. 205-206 (2010) 176 [arXiv:1006.1849] [INSPIRE].CrossRefGoogle Scholar
  112. [112]
    S. Weinzierl, Status of jet cross sections to NNLO, Nucl. Phys. Proc. Suppl. 160 (2006) 126 [hep-ph/0606301] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].ADSGoogle Scholar
  114. [114]
    D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].ADSGoogle Scholar
  115. [115]
    A. Vogt, S. Moch and J. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  116. [116]
    S. Buehler and C. Duhr, CHAPLINComplex harmonic polylogarithms in Fortran, arXiv:1106.5739 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Aude Gehrmann-De Ridder
    • 1
  • E. W. N. Glover
    • 2
  • Joao Pires
    • 1
  1. 1.Institute for Theoretical Physics, ETHZürichSwitzerland
  2. 2.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.

Personalised recommendations