Advertisement

Journal of High Energy Physics

, 2012:124 | Cite as

Electroweak gauge-boson production at small q T : Infrared safety from the collinear anomaly

  • Thomas Becher
  • Matthias Neubert
  • Daniel Wilhelm
Article

Abstract

Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio M V /q T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale \( {q_* } \sim {M_V}{e^{ - {\text{const}}/{\alpha_s}\left( {{M_V}} \right)}} \), which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either α s or q T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q T  = 0, including the normalization and first-order α s (q ) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.

Keywords

Hadronic Colliders Renormalization Group QCD 

References

  1. [1]
    Y.L. Dokshitzer, D. Diakonov and S. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Parisi and R. Petronzio, Small Transverse Momentum Distributions in Hard Processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Curci, M. Greco and Y. Srivastava, QCD jets from coherent states, Nucl. Phys. B 159 (1979) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Beneke, A. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Beneke, lectures delivered at the Helmholtz International Summer School on Heavy Quark Physics, Dubna, Russia, June 2005 http://theor.jinr.ru/∼hq2005/Lectures/Beneke/Beneke-Dubna-05.pdf.
  12. [12]
    J.G.M. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    J. Frenkel and J. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Corrections in High Energy Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, arXiv:1104.0881 [INSPIRE].
  17. [17]
    A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Mantry and F. Petriello, Transverse Momentum Distributions from Effective Field Theory with Numerical Results, Phys. Rev. D 83 (2011) 053007 [arXiv:1007.3773] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].ADSGoogle Scholar
  22. [22]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].ADSGoogle Scholar
  24. [24]
    R. Ellis, G. Martinelli and R. Petronzio, Lepton Pair Production at Large Transverse Momentum in Second Order QCD, Nucl. Phys. B 211 (1983) 106 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P.B. Arnold and M. Reno, The Complete Computation of High p T W and Z Production in 2nd Order QCD, Nucl. Phys. B 319 (1989) 37 [Erratum ibid. B 330 (1990) 284] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.J. Gonsalves, J. Pawlowski and C.-F. Wai, QCD radiative corrections to electroweak boson production at large transverse momentum in hadron collisions, Phys. Rev. D 40 (1989) 2245 [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Ellis and S. Veseli, W and Z transverse momentum distributions: Resummation in q T space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Ladinsky and C. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev. D 50 (1994) 4239 [hep-ph/9311341] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CDF collaboration, T. Affolder et al., The transverse momentum and total cross section of e + e pairs in the Z boson region from \( p\overline p \) collisions at \( \sqrt {s} = {1}.{8}\;TeV \), Phys. Rev. Lett. 84 (2000) 845 [hep-ex/0001021] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    DØ collaboration, B. Abbott et al., Differential production cross section of Z bosons as a function of transverse momentum at \( \sqrt {s} = {1}.{8}\;TeV \), Phys. Rev. Lett. 84 (2000) 2792 [hep-ex/9909020] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L.J. Dixon, Vrap: A program for computing rapidity distributions for production of lepton-pairs via virtual photons, W or Z bosons at hadron colliders at NNLO in QCD, http://www.slac.stanford.edu/∼lance/Vrap/.
  35. [35]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].ADSGoogle Scholar
  36. [36]
    DØ collaboration, V. Abazov et al., Measurement of the shape of the boson transverse momentum distribution in \( p\overline p \)Z/γ∗ → e + e  + X events produced at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. Lett. 100 (2008) 102002 [arXiv:0712.0803] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    DØ collaboration, V.M. Abazov et al., Measurement of the normalized Z/γ∗ → μ + μ transverse momentum distribution in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96}\;TeV \), Phys. Lett. B 693 (2010) 522 [arXiv:1006.0618] [INSPIRE].ADSGoogle Scholar
  38. [38]
    ATLAS collaboration, G. Aad et al., Measurement of the transverse momentum distribution of Z/γ∗ bosons in proton-proton collisions at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Vesterinen and T. Wyatt, A Novel Technique for Studying the Z Boson Transverse Momentum Distribution at Hadron Colliders, Nucl. Instrum. Meth. A 602 (2009) 432 [arXiv:0807.4956] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Banfi, S. Redford, M. Vesterinen, P. Waller and T. Wyatt, Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders, Eur. Phys. J. C 71 (2011) 1600 [arXiv:1009.1580] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    DØ collaboration, V.M. Abazov et al., Precise study of the Z/γ∗ boson transverse momentum distribution in \( p\overline p \) collisions using a novel technique, Phys. Rev. Lett. 106 (2011) 122001 [arXiv:1010.0262] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Banfi, M. Dasgupta and S. Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders, Phys. Lett. B 701 (2011) 75 [arXiv:1102.3594] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Marzani, A. Banfi, M. Dasgupta and L. Tomlinson, Accurate QCD predictions for new variables to study dilepton transverse momentum, arXiv:1106.6294 [INSPIRE].
  44. [44]
    R. Gonsalves, Personal home page, http://www.physics.buffalo.edu/gonsalves/.
  45. [45]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].ADSGoogle Scholar
  46. [46]
    C. Balázs and C. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].ADSGoogle Scholar
  47. [47]
    F. Landry, R. Brock, P.M. Nadolsky and C. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Mantry and F. Petriello, Transverse Momentum Distributions from Effective Field Theory, arXiv:1108.3609 [INSPIRE].
  49. [49]
    M. Neubert, Renormalization-group improved calculation of the B → X sγ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Thomas Becher
    • 1
  • Matthias Neubert
    • 2
  • Daniel Wilhelm
    • 2
  1. 1.Institut für Theoretische PhysikUniversität BernBernSwitzerland
  2. 2.Institut für Physik (THEP)Johannes Gutenberg-UniversitätMainzGermany

Personalised recommendations