Journal of High Energy Physics

, 2012:110 | Cite as

The Young modulus of black strings and the fine structure of blackfolds

  • Jay Armas
  • Joan Camps
  • Troels Harmark
  • Niels A. Obers


We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength linear response coefficient capturing this effect is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we apply our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.


Classical Theories of Gravity Black Holes Gauge-gravity correspondence Black Holes in String Theory 


  1. [1]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Emparan, Blackfolds, arXiv:1106.2021 [INSPIRE].
  9. [9]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfold approach for higher-dimensional black holes, Acta Phys. Polon. B 40 (2009) 3459 [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP 05 (2010) 042 [arXiv:1003.3636] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Vasilic and M. Vojinovic, Classical spinning branes in curved backgrounds, JHEP 07 (2007) 028 [arXiv:0707.3395] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Papapetrou, Spinning test particles in general relativity. 1., Proc. Roy. Soc. Lond. A 209 (1951) 248.MathSciNetADSGoogle Scholar
  13. [13]
    E. Corinaldesi and A. Papapetrou, Spinning test particles in general relativity. 2, Proc. Roy. Soc. Lond. A 209 (1951) 259.MathSciNetADSGoogle Scholar
  14. [14]
    B. Carter and H. Quintana, Foundations of general relativistic high-pressure elasticity theory, Proc. Roy. Soc. Lond. A 331 (1972) 57.MathSciNetADSGoogle Scholar
  15. [15]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (Anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    L. Landau and E.M. Lifshitz, Theory of elasticity, Course of theoretical physics. Vol. 7, Pergamon Press, Oxford U.K. (1959), pg. 134.Google Scholar
  17. [17]
    H. Elvang and P. Figueras, Black saturn, JHEP 05 (2007) 050 [hep-th/0701035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M.M. Caldarelli, O.J. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    G. Gibbons, M. Perry and C. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP 02 (2012) 010 [arXiv:1110.3764] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE].
  28. [28]
    S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    G. Gibbons, H. Lü, D.N. Page and C. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Jay Armas
    • 1
  • Joan Camps
    • 2
  • Troels Harmark
    • 3
  • Niels A. Obers
    • 1
  1. 1.The Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Centre for Particle Theory & Department of Mathematical Sciences, Science LaboratoriesDurhamUnited Kingdom
  3. 3.NORDITAStockholmSweden

Personalised recommendations