Journal of High Energy Physics

, 2012:102 | Cite as

Dynamical simulations of electroweak baryogenesis with fermions

  • Paul M. Saffin
  • Anders Tranberg


We perform real-time numerical lattice simulations of a one-family version of the Standard Model. We model the quantum fermions using the ensemble method and treat the bosonic scalar and non-abelian gauge fields classically. Our main interest is electroweak baryogenesis, and we test the approach by considering Standard Model baryon number violation through the chiral anomaly, a truly quantum phenomenon. We find that the method correctly reproduces the anomaly, and perform the first dynamical simulations of electroweak baryon number violation including fermions.


Lattice Gauge Field Theories Nonperturbative Effects Thermal Field Theory Lattice Quantum Field Theory 


  1. [1]
    A.D. Sakharov, Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.Google Scholar
  2. [2]
    M. Dine and A. Kusenko, The origin of the matter-antimatter asymmetry, Rev. Mod. Phys. 76 (2003) 1 [hep-ph/0303065] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSGoogle Scholar
  4. [4]
    V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [hep-ph/9603208] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE].
  10. [10]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  11. [11]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. García-Bellido, D.Y. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Nonequilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L.M. Krauss and M. Trodden, Baryogenesis below the electroweak scale, Phys. Rev. Lett. 83 (1999) 1502 [hep-ph/9902420] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E.J. Copeland, D. Lyth, A. Rajantie and M. Trodden, Hybrid inflation and baryogenesis at the TeV scale, Phys. Rev. D 64 (2001) 043506 [hep-ph/0103231] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Rajantie, P. Saffin and E.J. Copeland, Electroweak preheating on a lattice, Phys. Rev. D 63 (2001) 123512 [hep-ph/0012097] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E.J. Copeland, S. Pascoli and A. Rajantie, Dynamics of tachyonic preheating after hybrid inflation, Phys. Rev. D 65 (2002) 103517 [hep-ph/0202031] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Smit and A. Tranberg, Chern-Simons number asymmetry from CP-violation at electroweak tachyonic preheating, JHEP 12 (2002) 020 [hep-ph/0211243] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. García-Bellido, M. Garcia-Perez and A. Gonzalez-Arroyo, Chern-Simons production during preheating in hybrid inflation models, Phys. Rev. D 69 (2004) 023504 [hep-ph/0304285] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Ambjørn, T. Askgaard, H. Porter and M. Shaposhnikov, Sphaleron transitions and baryon asymmetry: a numerical real time analysis, Nucl. Phys. B 353 (1991) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Tranberg and J. Smit, Baryon asymmetry from electroweak tachyonic preheating, JHEP 11 (2003) 016 [hep-ph/0310342] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Tranberg, A. Hernandez, T. Konstandin and M.G. Schmidt, Cold electroweak baryogenesis with standard model CP-violation, Phys. Lett. B 690 (2010) 207 [arXiv:0909.4199] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Tranberg, Standard model CP-violation and cold electroweak baryogenesis, Phys. Rev. D 84 (2011) 083516 [arXiv:1009.2358] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Hernandez, T. Konstandin and M.G. Schmidt, Sizable CP-violation in the bosonized standard model, Nucl. Phys. B 812 (2009) 290 [arXiv:0810.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Garcia-Recio and L.L. Salcedo, CP violation in the effective action of the standard model, JHEP 07 (2009) 015 [arXiv:0903.5494] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Temperature dependence of standard model CP-violation, Phys. Rev. Lett. 108 (2012) 041601 [arXiv:1110.6818] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Borsányi and M. Hindmarsh, Low-cost fermions in classical field simulations, Phys. Rev. D 79 (2009) 065010 [arXiv:0809.4711] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Berges, D. Gelfand and J. Pruschke, Quantum theory of fermion production after inflation, Phys. Rev. Lett. 107 (2011) 061301 [arXiv:1012.4632] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.M. Saffin and A. Tranberg, Real-time fermions for baryogenesis simulations, JHEP 07 (2011) 066 [arXiv:1105.5546] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Aarts and J. Smit, Real time dynamics with fermions on a lattice, Nucl. Phys. B 555 (1999) 355 [hep-ph/9812413] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Aarts and J. Smit, Particle production and effective thermalization in inhomogeneous mean field theory, Phys. Rev. D 61 (2000) 025002 [hep-ph/9906538] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies, Clarendon Press, Oxford U.K. (2004).MATHCrossRefGoogle Scholar
  35. [35]
    I.-H. Lee and R.E. Shrock, The chiral transition in an SU(2) gauge Higgs fermion theory with Yukawa couplings, Nucl. Phys. B 305 (1988) 305 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Anselm and A. Johansen, Can electroweak theta term be observable?, Nucl. Phys. B 412 (1994) 553 [hep-ph/9305271] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Smit, Introduction to quantum fields on a lattice: a robust mate, Cambridge University Press, Cambridge U.K. (2002).MATHCrossRefGoogle Scholar
  38. [38]
    W. Bock, J.E. Hetrick and J. Smit, Fermion production despite fermion number conservation, Nucl. Phys. B 437 (1995) 585 [hep-lat/9406015] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Manton, Topology in the Weinberg-Salam theory, Phys. Rev. D 28 (1983) 2019 [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    F.R. Klinkhamer and C. Rupp, Sphalerons, spectral flow and anomalies, J. Math. Phys. 44 (2003) 3619 [hep-th/0304167] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    K.G. Wilson, Quarks and strings on a lattice, in New phenomena in subnuclear physics. Part A, A. Zichichi ed., Plenum Press, New York U.S.A. (1977).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.School of Physics and Astronomy, University Park, University of NottinghamNottinghamU.K.
  2. 2.Niels Bohr International Academy and Discovery Center, Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations