Advertisement

Journal of High Energy Physics

, 2011:113 | Cite as

Quantum corrections to heterotic moduli potentials

  • Lilia Anguelova
  • Callum Quigley
Article

Abstract

In a recent paper, we derived the leading α′ corrections to the Kähler potentials for moduli in (0, 2) heterotic compactifications. In the same spirit as the LARGE volume stabilization scenario for type IIB orientifolds, we examine whether these quantum corrections, together with a combination of tree-level and non-perturbative superpotentials, are sufficient to stabilize the overall volume modulus at large values. This is not a priori obvious, since the corrections we found are of a lower order than those used in the type IIB setting. Nevertheless, we find that stabilizing the volume at (exponentially) large values may be possible (under certain conditions) in these heterotic backgrounds.

Keywords

Flux compactifications SuperstringVacua Superstringsand Heterotic Strings 

References

  1. [1]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    T. House and E. Palti, Effective action of (massive) IIA on manifolds with SU(3) structure, Phys. Rev. D 72 (2005) 026004 [hep-th/0505177] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    K. Behrndt, M. Cvetič and T. Liu, Classification of supersymmetric flux vacua in M-theory, Nucl. Phys. B 749 (2006) 25 [hep-th/0512032] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    L. Anguelova and K. Zoubos, Flux superpotential in heterotic M-theory, Phys. Rev. D 74 (2006) 026005 [hep-th/0602039] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    A. Micu, E. Palti and P.M. Saffin, M-theory on seven-dimensional manifolds with SU(3) structure, JHEP 05 (2006) 048 [hep-th/0602163] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    I. Benmachiche and T.W. Grimm, Generalized N = 1 orientifold compactifications and the Hitchin functionals, Nucl. Phys. B 748 (2006) 200 [hep-th/0602241] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Micu, E. Palti and G. Tasinato, Towards minkowski vacua in type II string compactifications, JHEP 03 (2007) 104 [hep-th/0701173] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory solution to the hierarchy problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM — An M theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [SPIRES].ADSGoogle Scholar
  16. [16]
    K. Becker, M. Becker, K. Dasgupta and S. Prokushkin, Properties of heterotic vacua from superpotentials, Nucl. Phys. B 666 (2003) 144 [hep-th/0304001] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004) 126009 [hep-th/0408121] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds: I, JHEP 04 (2003) 007 [hep-th/0301161] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    G. Curio, A. Krause and D. Lust, Moduli Stabilization in the Heterotic/IIB Discretuum, Fortsch. Phys. 54 (2006) 225 [hep-th/0502168] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, arXiv:0801.4154 [SPIRES].
  22. [22]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons, torsion curves and non-perturbative superpotentials, Phys. Lett. B 649 (2007) 334 [hep-th/0703134] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    L. Witten and E. Witten, Large radius expansion of superstring compactifications, Nucl. Phys. B 281 (1987) 109 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Gillard, G. Papadopoulos and D. Tsimpis, Anomaly, fluxes and (2, 0) heterotic-string compactifications, JHEP 06 (2003) 035 [hep-th/0304126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    L. Anguelova, C. Quigley and S. Sethi, The leading quantum corrections to stringy Kähler potentials, JHEP 10 (2010) 065 [arXiv:1007.4793] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    M. Becker and D. Constantin, A note on flux induced superpotentials in string theory, JHEP 08 (2003) 015 [hep-th/0210131] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA flux compactifications, JHEP 06 (2008) 084 [arXiv:0804.1248] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′-corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet, Nucl. Phys. B 278 (1986) 769 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet. 2, Nucl. Phys. B 289 (1987) 319 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Distler, Resurrecting (2, 0) compactifications, Phys. Lett. B 188 (1987) 431 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0, 2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Basu and S. Sethi, World-sheet stability of (0, 2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    C. Beasley and E. Witten, Residues and world-sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S. Gukov, S. Kachru, X. Liu and L. McAllister, Heterotic moduli stabilization with fractional Chern-Simons invariants, Phys. Rev. D 69 (2004) 086008 [hep-th/0310159] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    H. Looyestijn and S. Vandoren, On NS5-brane instantons and volume stabilization, JHEP 04 (2008) 024 [arXiv:0801.3949] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Cicoli, J.P. Conlon and F. Quevedo, General analysis of LARGE volume scenarios with string loop moduli stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Dept. of PhysicsUniversity of CincinnatiCincinnatiU.S.A.
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.

Personalised recommendations