Advertisement

Journal of High Energy Physics

, 2011:102 | Cite as

Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight

  • R. N. Lee
  • V. A. Smirnov
Article

Abstract

We evaluate analytically higher terms of the ϵ-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g − 2 in QED up to the transcendentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin-Barnes representation, and the PSLQ algorithm.

Keywords

NLO Computations QCD 

References

  1. [1]
    R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ϵ, Nucl. Phys. Proc. Suppl. 205 206 (2010) 308 [arXiv:1005.0362] [SPIRES].CrossRefGoogle Scholar
  5. [5]
    R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205 206 (2010) 135 [arXiv:1007.2256] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [SPIRES].ADSGoogle Scholar
  7. [7]
    G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [SPIRES].ADSGoogle Scholar
  8. [8]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [SPIRES].ADSGoogle Scholar
  10. [10]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α 3 in QED, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417] [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Laporta and E. Remiddi, The electron (g(e) − 2) and the value of α: a check of QED at 1 ppb, Acta Phys. Polon. B 28 (1997) 959 [SPIRES].Google Scholar
  13. [13]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Revised value of the eighth-order electron g − 2, Phys. Rev. Lett. 99 (2007) 110406 [arXiv:0706.3496] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order lepton g − 2: contribution of some fourth-order radiative corrections to the sixth-order g − 2 containing light-by-light-scattering subdiagrams, Phys. Rev. D 82 (2010) 113004 [arXiv:1009.3077] [SPIRES].ADSGoogle Scholar
  15. [15]
    S. Laporta and E. Remiddi, Status of the QED prediction of the electron (g − 2), Nucl. Phys. Proc. Suppl. 181 182 (2008) 10 [SPIRES].CrossRefGoogle Scholar
  16. [16]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    S. Laporta, Calculation of master integrals by difference equations, Phys. Lett. B 504 (2001) 188 [hep-ph/0102032] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    S. Laporta, High-precision ϵ-expansions of three-loop master integrals contributing to the electron g − 2 in QED, Phys. Lett. B 523 (2001) 95 [hep-ph/0111123] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, NASA-Ames Technical Report NAS-96-005, Math. Comput. 68 (1999) 351.MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    K. Melnikov and T. van Ritbergen, The three-loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [SPIRES].ADSGoogle Scholar
  22. [22]
    K. Melnikov and T. van Ritbergen, The three-loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order α s 3, Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s 3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple zeta value data mine, Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    T. Huber and D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [SPIRES].ADSMATHCrossRefGoogle Scholar
  27. [27]
    R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Comput. Phys. Commun. 178 (2008) 596 [arXiv:0709.4092] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    C. Bogner and S. Weinzierl, Blowing up Feynman integrals, Nucl. Phys. Proc. Suppl. 183 (2008) 256 [arXiv:0806.4307] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [SPIRES].ADSMATHCrossRefGoogle Scholar
  36. [36]
    A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun. 182 (2011) 790 [arXiv:0912.0158] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].ADSGoogle Scholar
  38. [38]
    J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].ADSMATHCrossRefGoogle Scholar
  40. [40]
    A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1 [SPIRES].CrossRefGoogle Scholar
  42. [42]
    V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006) [SPIRES].Google Scholar
  43. [43]
    D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Budker Institute of Nuclear Physics and Novosibirsk State UniversityNovosibirskRussia
  2. 2.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia

Personalised recommendations