Journal of High Energy Physics

, 2011:87 | Cite as

Low-energy signals from kinetic mixing with a warped abelian hidden sector

  • Kristian L. McDonald
  • David E. Morrissey


We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.


Phenomenology of Field Theories in Higher Dimensions 


  1. [1]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].ADSGoogle Scholar
  2. [2]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [SPIRES].
  3. [3]
    K.M. Zurek, TASI 2009 lectures: searching for unexpected physics at the LHC, arXiv:1001.2563 [SPIRES].
  4. [4]
    N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e + e colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    S. Heinemeyer, Y. Kahn, M. Schmitt and M. Velasco, An experiment to search for light dark matter in low-energy ep scattering, arXiv:0705.4056 [SPIRES].
  6. [6]
    M. Ahlers, H. Gies, J. Jaeckel, J. Redondo and A. Ringwald, Light from the hidden sector, Phys. Rev. D 76 (2007) 115005 [arXiv:0706.2836] [SPIRES].ADSGoogle Scholar
  7. [7]
    J. Jaeckel and A. Ringwald, A cavity experiment to search for hidden sector photons, Phys. Lett. B 659 (2008) 509 [arXiv:0707.2063] [SPIRES].ADSGoogle Scholar
  8. [8]
    M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    L. Barze et al., Radiative events as a probe of dark forces at GeV-scale e + e colliders, arXiv:1007.4984 [SPIRES].
  11. [11]
    B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].ADSGoogle Scholar
  12. [12]
    B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, arXiv:0911.4938 [SPIRES].
  13. [13]
    R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].ADSGoogle Scholar
  14. [14]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].ADSGoogle Scholar
  16. [16]
    R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A’ decaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES].ADSGoogle Scholar
  18. [18]
    M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].ADSGoogle Scholar
  19. [19]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  20. [20]
    N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    D. Hooper and K.M. Zurek, A natural supersymmetric model with MeV dark matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [SPIRES].ADSGoogle Scholar
  22. [22]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [SPIRES].ADSGoogle Scholar
  25. [25]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [SPIRES].ADSGoogle Scholar
  26. [26]
    D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The cosmology of composite inelastic dark matter, JHEP 06 (2010) 113 [arXiv:1003.4729] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    R. Foot, A CoGeNT confirmation of the DAMA signal, Phys. Lett. B 692 (2010) 65 [arXiv:1004.1424] [SPIRES].ADSGoogle Scholar
  28. [28]
    T. Gherghetta and B. von Harling, A warped model of dark matter, JHEP 04 (2010) 039 [arXiv:1002.2967] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    D. Bunk and J. Hubisz, Revealing Randall-Sundrum hidden valleys, Phys. Rev. D 81 (2010) 125009 [arXiv:1002.3160] [SPIRES].ADSGoogle Scholar
  30. [30]
    K.L. McDonald and D.E. Morrissey, Low-energy probes of a warped extra dimension, JHEP 05 (2010) 056 [arXiv:1002.3361] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].CrossRefGoogle Scholar
  36. [36]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].ADSGoogle Scholar
  38. [38]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum gauge hierarchy model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].ADSGoogle Scholar
  40. [40]
    R. Foot and X.-G. He, Comment on ZZ′ mixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [SPIRES].ADSGoogle Scholar
  41. [41]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].ADSGoogle Scholar
  42. [42]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    B. Batell and T. Gherghetta, Holographic mixing quantified, Phys. Rev. D 76 (2007) 045017 [arXiv:0706.0890] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    B. Gripaios, Neutrinos in a sterile throat, Nucl. Phys. B 768 (2007) 157 [Erratum ibid. 830 (2010) 390] [hep-ph/0611218] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    T. Flacke and D. Maybury, Aspects of axion phenomenology in a slice of AdS 5, JHEP 03 (2007) 007 [hep-ph/0612126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    K.L. McDonald, Light neutrinos from a mini-seesaw mechanism in warped space, Phys. Lett. B 696 (2011) 266 [arXiv:1010.2659] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in large volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    M. Bullimore, J.P. Conlon and L.T. Witkowski, Kinetic mixing of U(1)s for local string models, JHEP 11 (2010) 142 [arXiv:1009.2380] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    C. Csáki, M. Reece and J. Terning, The AdS/QCD correspondence: still undelivered, JHEP 05 (2009) 067 [arXiv:0811.3001] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    M.A. Stephanov, Deconstruction of unparticles, Phys. Rev. D 76 (2007) 035008 [arXiv:0705.3049] [SPIRES].ADSGoogle Scholar
  52. [52]
    M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].
  53. [53]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [SPIRES].ADSGoogle Scholar
  54. [54]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  55. [55]
    V.V. Ezhela, S.B. Lugovsky and O.V. Zenin, Hadronic part of the muon g − 2 estimated on the σ tot(2003)(e + e hadrons) evaluated data compilation, hep-ph/0312114 [SPIRES].
  56. [56]
    M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Confronting spectral functions from e + e annihilation and τ decays: consequences for the muon magnetic moment, Eur. Phys. J. C 27 (2003) 497 [hep-ph/0208177] [SPIRES].ADSGoogle Scholar
  57. [57]
    W.D. Goldberger and I.Z. Rothstein, High energy field theory in truncated AdS backgrounds, Phys. Rev. Lett. 89 (2002) 131601 [hep-th/0204160] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    W.D. Goldberger and I.Z. Rothstein, Effective field theory and unification in AdS backgrounds, Phys. Rev. D 68 (2003) 125011 [hep-th/0208060] [SPIRES].MathSciNetADSGoogle Scholar
  59. [59]
    W.D. Goldberger and I.Z. Rothstein, Systematics of coupling flows in AdS backgrounds, Phys. Rev. D 68 (2003) 125012 [hep-ph/0303158] [SPIRES].MathSciNetADSGoogle Scholar
  60. [60]
    M. Reece and L.-T. Wang, Randall-Sundrum and strings, JHEP 07 (2010) 040 [arXiv:1003.5669] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    S. Gopalakrishna, S. Jung and J.D. Wells, Higgs boson decays to four fermions through an abelian hidden sector, Phys. Rev. D 78 (2008) 055002 [arXiv:0801.3456] [SPIRES].ADSGoogle Scholar
  62. [62]
    P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [SPIRES].ADSGoogle Scholar
  63. [63]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].ADSGoogle Scholar
  64. [64]
    K.-M. Cheung, Phenomenology of radion in Randall-Sundrum scenario, Phys. Rev. D 63 (2001) 056007 [hep-ph/0009232] [SPIRES].ADSGoogle Scholar
  65. [65]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [SPIRES].MathSciNetADSGoogle Scholar
  66. [66]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].ADSGoogle Scholar
  67. [67]
    T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [SPIRES].ADSGoogle Scholar
  68. [68]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    S.S.C. Law and K.L. McDonald, Broken symmetry as a stabilizing remnant, Phys. Rev. D 82 (2010) 104032 [arXiv:1008.4336] [SPIRES].ADSGoogle Scholar
  70. [70]
    A. Pomarol, Grand unified theories without the desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5, JHEP 11 (2001) 003 [hep-th/0108114] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    K.-w. Choi, H.D. Kim and I.-W. Kim, Gauge coupling renormalization in orbifold field theories, JHEP 11 (2002) 033 [hep-ph/0202257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    K. Agashe, A. Delgado and R. Sundrum, Gauge coupling renormalization in RS1, Nucl. Phys. B 643 (2002) 172 [hep-ph/0206099] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    K. Agashe and A. Delgado, A note on CFT dual of RS model with gauge fields in bulk, Phys. Rev. D 67 (2003) 046003 [hep-th/0209212] [SPIRES].MathSciNetADSGoogle Scholar
  75. [75]
    K. Agashe, A. Delgado and R. Sundrum, Grand unification in RS1, Ann. Phys. 304 (2003) 145 [hep-ph/0212028] [SPIRES].ADSMATHCrossRefGoogle Scholar
  76. [76]
    S.L. Dubovsky, V.A. Rubakov and P.G. Tinyakov, Brane world: disappearing massive matter, Phys. Rev. D 62 (2000) 105011 [hep-th/0006046] [SPIRES].ADSGoogle Scholar
  77. [77]
    S.L. Dubovsky and V.A. Rubakov, On models of gauge field localization on a brane, Int. J. Mod. Phys. A 16 (2001) 4331 [hep-th/0105243] [SPIRES].MathSciNetADSGoogle Scholar
  78. [78]
    A. Friedland, M. Giannotti and M. Graesser, On the RS2 realization of unparticles, Phys. Lett. B 678 (2009) 149 [arXiv:0902.3676] [SPIRES].ADSGoogle Scholar
  79. [79]
    A. Friedland, M. Giannotti and M.L. Graesser, Vector bosons in the Randall-Sundrum 2 and Lykken-Randall models and unparticles, JHEP 09 (2009) 033 [arXiv:0905.2607] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    S.B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03 (2000) 023 [hep-th/0002091] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    G. Cacciapaglia, A. Deandrea and S. De Curtis, Nearby resonances beyond the Breit-Wigner approximation, Phys. Lett. B 682 (2009) 43 [arXiv:0906.3417] [SPIRES].ADSGoogle Scholar
  82. [82]
    OPAL collaboration, G. Abbiendi et al., Precise determination of the Z resonance parameters at LEP: ’Zedometry’, Eur. Phys. J. C 19 (2001) 587 [hep-ex/0012018] [SPIRES].ADSGoogle Scholar
  83. [83]
    ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].ADSGoogle Scholar
  84. [84]
    ALEPH collaboration, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [SPIRES].
  85. [85]
    J. Alcaraz, Precision electroweak measurements and constraints on the standard model, arXiv:0911.2604 [SPIRES].
  86. [86]
    P. Janot, Closing the light sbottom mass window from a compilation of e + e hadron data, Phys. Lett. B 594 (2004) 23 [hep-ph/0403157] [SPIRES].ADSGoogle Scholar
  87. [87]
    D. Karlen and H. Burkhardt, Investigation of vacuum polarization in t-channel radiative Bhabha scattering, Eur. Phys. J. C 22 (2001) 39 [hep-ex/0105065] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    OPAL collaboration, G. Abbiendi et al., Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP, Eur. Phys. J. C 45 (2006) 1 [hep-ex/0505072] [SPIRES].ADSGoogle Scholar
  89. [89]
    A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, arXiv:1006.0973 [SPIRES].
  90. [90]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev. D 74 (2006) 095005 [Erratum ibid. D 79 (2009) 039902] [hep-ph/0608068] [SPIRES].ADSGoogle Scholar
  91. [91]
    D. Feldman, Z. Liu and P. Nath, The Stückelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [SPIRES].ADSGoogle Scholar
  92. [92]
    OPAL collaboration, P.D. Acton et al., Search for anomalous production of high mass photon pairs in e + e collisions at LEP, Phys. Lett. B 311 (1993) 391 [SPIRES].ADSGoogle Scholar
  93. [93]
    L3 collaboration, M. Acciarri et al., Tests of QED at LEP energies using e + e γgamma(γ) and e + e lepton + lepton γγ, Phys. Lett. B 353 (1995) 136 [SPIRES].ADSGoogle Scholar
  94. [94]
    M. Ahlers, J. Jaeckel, J. Redondo and A. Ringwald, Probing hidden sector photons through the Higgs window, Phys. Rev. D 78 (2008) 075005 [arXiv:0807.4143] [SPIRES].ADSGoogle Scholar
  95. [95]
    P. Fayet, U-boson production in e + e annihilations, ψ and Υ decays and light dark matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [SPIRES].ADSGoogle Scholar
  96. [96]
    P. Fayet, Constraints on light dark matter and U bosons, from ψ, Υ, K + , π 0 , η and ηdecays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [SPIRES].ADSGoogle Scholar
  97. [97]
    KLOE collaboration, F. Bossi, E. De Lucia, J. Lee-Franzini, S. Miscetti and M. Palutan, Precision kaon and hadron physics with KLOE, Riv. Nuovo Cim. 31 (2008) 531 [arXiv:0811.1929] [SPIRES].ADSGoogle Scholar
  98. [98]
    G. Amelino-Camelia et al., Physics with the KLOE-2 experiment at the upgraded DAΦNE, Eur. Phys. J. C 68 (2010) 619 [arXiv:1003.3868] [SPIRES].ADSCrossRefGoogle Scholar
  99. [99]
    BABAR collaboration, B. Aubert et al., The BaBar detector, Nucl. Instrum. Meth. A 479 (2002) 1 [hep-ex/0105044] [SPIRES].ADSGoogle Scholar
  100. [100]
    BABAR collaboration, B. Aubert et al., A measurement of the total width, the electronic width and the mass of the Υ(10580) resonance, Phys. Rev. D 72 (2005) 032005 [hep-ex/0405025] [SPIRES].ADSGoogle Scholar
  101. [101]
    BABAR collaboration, B. Aubert et al., Search for a narrow resonance in e + e to four lepton final states, arXiv:0908.2821 [SPIRES].
  102. [102]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [SPIRES].MathSciNetADSGoogle Scholar
  103. [103]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.TRIUMFVancouverCanada
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations