Journal of High Energy Physics

, 2011:85 | Cite as

Three roads to probe-brane superconductivity

  • Bum-Hoon Lee
  • Matthias C. Wapler


We study a defect system of two parallel D5 probe branes in a large-N c D3 background. Using the non-abelian DBI action, we study three different fields that can give rise to a superconducting phase transition: A vector (p-wave), a scalar corresponding to a non-trivial “separation” of the branes in the (3 + 1) field theory directions and a scalar corresponding to a separation in the “internal” S 5 (both s-wave).

Comparing these phases first in the α2 expansion, we find that the internal scalar has the largest critical temperature and is always thermodynamically preferred. Further, there is an interesting attractor behavior.

Taking a simplified version of the full DBI action that preserves its regularity and geometry, we find that the divergences of the α2 expansion are resolved and some second order transitions turn into first order ones. In addition to some other changes of the phase diagram due to the structure of the DBI action, we observe that the ground state degeneracy of the unbroken theory is lifted. We also isolate the unphysical artifacts of our simplification.


Holography and condensed matter physics (AdS/CMT) Field Theories in Lower Dimensions D-branes Holography and quark-gluon plasmas 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  4. [4]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].ADSGoogle Scholar
  5. [5]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    M.C. Wapler, Holographic Experiments on Defects, Int. J. Mod. Phys. A 25 (2010) 4397 [arXiv:0909.1698] [SPIRES].ADSGoogle Scholar
  8. [8]
    R.C. Myers and M.C. Wapler, Transport Properties of Holographic Defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].
  10. [10]
    K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].ADSMATHCrossRefGoogle Scholar
  12. [12]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall Effect in a Holographic Model, JHEP 10 (2010) 063 [arXiv:1003.4965] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D.K. Hong and H.-U. Yee, Holographic aspects of three dimensional QCD from string theory, JHEP 05 (2010) 036 [arXiv:1003. 1306] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    E. Keski-Vakkuri and P. Kraus, Quantum Hall Effect in AdS/CFT, JHEP 09 (2008) 130 [arXiv:0805.4643] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    R.C. Myers and R.M. Thomson, Holographic mesons in various dimensions, JHEP 09 (2006) 066 [hep-th/0605017] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T. Albash and C.V. Johnson, Phases of Holographic Superconductors in an External Magnetic Field, arXiv:0906.0519 [SPIRES].
  23. [23]
    E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. O’Bannon, Toward a Holographic Model of Superconducting Fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [SPIRES].CrossRefGoogle Scholar
  25. [25]
    S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    M. Ammon, J. Erdmenger, M. Kaminski and A. O’Bannon, Fermionic Operator Mixing in Holographic p-wave Superfluids, JHEP 05 (2010) 053 [arXiv:1003.1134] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [SPIRES].ADSGoogle Scholar
  28. [28]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].ADSGoogle Scholar
  35. [35]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    J. Erdmenger, M. Kaminski, P. Kerner and F. Rust, Finite baryon and isospin chemical potential in AdS/CFT with flavor, JHEP 11 (2008) 031 [arXiv:0807.2663] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Karch and A. Katz, Adding flavor to AdS/CFT, Fortsch. Phys. 51 (2003) 759 [SPIRES].
  39. [39]
    O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J. Erdmenger, Z. Guralnik and I. Kirsch, Four-Dimensional Superconformal Theories with Interacting Boundaries or Defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    M.C. Wapler, Thermodynamics of Holographic Defects, JHEP 01 (2010) 056 [arXiv:0911.2943] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    M.C. Wapler, Massive Quantum Liquids from Holographic Angel’s Trumpets, JHEP 05 (2010) 019 [arXiv:1002.0336] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J. Erdmenger and I. Kirsch, Mesons in gauge/gravity dual with large number of fundamental fields, JHEP 12 (2004) 025 [hep-th/0408113] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  52. [52]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Kitazawa, Effective Lagrangian for the open superstring from a 5-point function, Nucl. Phys. B 289 (1987) 599 [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    P. Koerber and A. Sevrin, The non-Abelian Born-Infeld action through order α′**3, JHEP 10 (2001) 003 [hep-th/0108169] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    M. Wijnholt, On curvature-squared corrections for D-brane actions, hep-th/0301029 [SPIRES].
  59. [59]
    A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [SPIRES].
  60. [60]
    L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    P. Benincasa, Universality of Holographic Phase Transitions and Holographic Quantum Liquids, arXiv:0911.0075 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Quantum SpacetimeSogang UniversitySeoulS. Korea

Personalised recommendations