Advertisement

Journal of High Energy Physics

, 2011:82 | Cite as

Holography for chiral scale-invariant models

  • R. N. Caldeira Costa
  • Marika Taylor
Article

Abstract

Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z − 1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z = 2 being the Schrödinger geometry. In this paper we explore holography for such chiral scale-invariant models. The special case of z = 0 can be realized with gravity coupled to a scalar, and is of particular interest since it is related to a Lifshitz theory with dynamical exponent two upon dimensional reduction. We show however that the corresponding reduction of the dual field theory is along a null circle, and thus the Lifshitz theory arises upon discrete light cone quantization of an anisotropic scale invariant field theory.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C. Duval, G.W. Gibbons and P. Horvathy, Celestial mechanics, conformal structures and gravitational waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    J.L. Cardy, Critical exponents of the chiral Potts model from conformal field theory, Nucl. Phys. B 389 (1993) 577 [hep-th/9210002] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    K. Balasubramanian and J. McGreevy, The particle number in galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Ostlund, Incommensurate and commensurate phases in asymmetric clock models, Phys. Rev. B 24 (1981) 398 [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    S. Howes, L.p. Kadanoff and M. Den Nijs, Quantum model for commensurate-incommensurate transitions, Nucl. Phys. B 215 (1983) 169 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    V.A. Fateev and A.B. Zamolodchikov, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems, Sov. Phys. JETP 62 (1985) 215 [SPIRES].MathSciNetGoogle Scholar
  12. [12]
    G. Albertini, B.M. McCoy, J.H.H. Perk and S. Tang, Excitation spectruml and order parameter for the integrable N state chiral Potts model, Nucl. Phys. B 314 (1989) 741 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R.J. Baxter, The superintegrable chiral Potts model, Phys. Lett. A 133 (1988) 185 [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    R.J. Baxter, Free energy of the solvable chiral Potts model, J. Stat. Phys. 52 (1988) 639.MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S. Olmez, O. Sarioglu and B. Tekin, Mass and angular momentum of asymptotically AdS or flat solutions in the topologically massive gravity, Class. Quant. Grav. 22 (2005) 4355 [gr-qc/0507003] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D. Anninos, G. Compere, S. de Buyl, S. Detournay and M. Guica, The curious case of null warped space, JHEP 11 (2010) 119 [arXiv:1005.4072] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the topologically massive gravity/CFT correspondence, arXiv:0909.5617 [SPIRES].
  22. [22]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].MathSciNetMATHGoogle Scholar
  24. [24]
    R.G. Leigh and N.N. Hoang, Real-time correlators and non-relativistic holography, JHEP 11 (2009) 010 [arXiv:0904.4270] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    E. Barnes, D. Vaman and C. Wu, Holographic real-time non-relativistic correlators at zero and finite temperature, Phys. Rev. D 82 (2010) 125042 [arXiv:1007.1644] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times II: particle and field probes of the causal structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    E. O Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].MathSciNetCrossRefGoogle Scholar
  31. [31]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [SPIRES].ADSGoogle Scholar
  35. [35]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Ceresole, G. Dall’Agata and R. D’Auria, KK spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  38. [38]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys. B 493 (1997) 588 [hep-th/9609022] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    D.Z. Freedman, K. Johnson, R. Muñoz-Tapia and X. Vilasis-Cardona, A cutoff procedure and counterterms for differential renormalization, Nucl. Phys. B 395 (1993) 454 [hep-th/9206028] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [SPIRES].
  45. [45]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].ADSMATHCrossRefGoogle Scholar
  47. [47]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J.D. Brown and K.V. Kuchar, Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D 51 (1995) 5600 [gr-qc/9409001] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    J.D. Brown, On variational principles for gravitating perfect fluids, gr-qc/9407008 [SPIRES].
  50. [50]
    G. Compere, W. Song and A. Virmani, Microscopics of extremal kerr from spinning M5 branes, arXiv:1010.0685 [SPIRES].
  51. [51]
    M. Guica and A. Strominger, Microscopic realization of the Kerr/CFT correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsAmsterdamThe Netherlands

Personalised recommendations