Advertisement

Journal of High Energy Physics

, 2011:55 | Cite as

Supersymmetric Higgs production in gluon fusion

  • Robert V. Harlander
  • Franziska Hofmann
  • Hendrik Mantler
Article

Abstract

The cross section through gluon fusion is calculated for the production of the light neutral Higgs boson through next-to-leading order QCD within the Minimal Supersymmetric Standard Model. The quark-mediated contributions are taken into account exactly, while for the genuinely supersymmetric terms we use expressions obtained in the limit of large squark, gluino and top quark masses. We present numerical results for the total inclusive cross section as well as for kinematical distributions of the Higgs boson. We also consider the effect of an MSSM-like 4th generation on the total Higgs production cross section.

Keywords

Higgs Physics Supersymmetric Standard Model NLO Computations Hadronic Colliders 

References

  1. [1]
    CDF and D0 collaboration, Combined CDF and D0 Upper Limits on Standard Model Higgs-Boson Production with up to 6.7 fb −1 of Data, arXiv:1007.4587 [SPIRES].
  2. [2]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    R. Harlander, Higgs production — higher orders and finite top mass effects, proceedings of the XLVth Rencontres de Moriond 2010, La Thuile Italy (2010).Google Scholar
  5. [5]
    R. Harlander, Higgs production at the Large Hadron Collider: theoretical status, J. Phys. G 35 (2008) 033001 [SPIRES].ADSGoogle Scholar
  6. [6]
    Tevatron New Phenomena & Higgs Working Group collaboration, D. Benjamin et al., Combined CDF and D0 upper limits on MSSM Higgs boson production in tau-tau final states with up to 2.2 fb −1, arXiv:1003.3363 [SPIRES].
  7. [7]
    J. Baglio and A. Djouadi, Revisiting the constraints on the Supersymmetric Higgs sector at the Tevatron, arXiv:1012.2748 [SPIRES].
  8. [8]
    CDF and D0 collaboration, T. Aaltonen et al., Combined Tevatron upper limit on ggHW + W and constraints on the Higgs boson mass in fourth-generation fermion models, arXiv:1005.3216 [SPIRES].
  9. [9]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].ADSGoogle Scholar
  22. [22]
    A. Idilbi, X.-d. Ji and F. Yuan, Resummation of Threshold Logarithms in Effective Field Theory For DIS, Drell-Yan and Higgs Production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].ADSGoogle Scholar
  24. [24]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [SPIRES].ADSGoogle Scholar
  27. [27]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [SPIRES].ADSGoogle Scholar
  28. [28]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [SPIRES].ADSGoogle Scholar
  30. [30]
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [SPIRES].ADSGoogle Scholar
  31. [31]
    R.V. Harlander and M. Steinhauser, Hadronic Higgs Production and Decay in Supersymmetry at Next-to-Leading Order, Phys. Lett. B 574 (2003) 258 [hep-ph/0307346] [SPIRES].ADSGoogle Scholar
  32. [32]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    R. Harlander and M. Steinhauser, Effects of SUSY-QCD in hadronic Higgs production at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 111701 [hep-ph/0308210] [SPIRES].ADSGoogle Scholar
  34. [34]
    G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    M. Mühlleitner and M. Spira, Higgs boson production via gluon fusion: Squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh,H in the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    A. Pak, M. Steinhauser and N. Zerf, Higgs boson production in gluon fusion to NNLO in the MSSM, arXiv:1012.0639 [SPIRES].
  41. [41]
    S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [SPIRES].ADSGoogle Scholar
  42. [42]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
  46. [46]
    F. Hofmann, Influence of the Supersymmetric Bottom Sector on Higgs Production and Decay, Ph.D. Thesis, Wuppertal University, Wuppertal Germany (2009).Google Scholar
  47. [47]
    O. Brein and W. Hollik, MSSM Higgs bosons associated with high-p T jets at hadron colliders, Phys. Rev. D 68 (2003) 095006 [hep-ph/0305321] [SPIRES].ADSGoogle Scholar
  48. [48]
    B. Field, S. Dawson and J. Smith, Scalar and pseudoscalar Higgs boson plus one jet production at the LHC and Tevatron, Phys. Rev. D 69 (2004) 074013 [hep-ph/0311199] [SPIRES].ADSGoogle Scholar
  49. [49]
    O. Brein and W. Hollik, Distributions for MSSM Higgs boson + jet production at hadron colliders, Phys. Rev. D 76 (2007) 035002 [arXiv:0705.2744] [SPIRES].ADSGoogle Scholar
  50. [50]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ + τ : A Possible Signature of Intermediate Mass Higgs Bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    U. Baur and E.W.N. Glover, Higgs Boson Production At Large Transverse Momentum In Hadronic Collisions, Nucl. Phys. B 339 (1990) 38 [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [SPIRES].ADSGoogle Scholar
  54. [54]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar Particle Contribution to Higgs Production via Gluon Fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [SPIRES].ADSGoogle Scholar
  56. [56]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [SPIRES].ADSGoogle Scholar
  57. [57]
    V.A. Smirnov, Springer Tracts in Modern Physics. Vol. 177: Applied asymptotic expansions in momenta and masses, Springer, Heidelberg Germany (2002) [ISBN:3-540-42334-6]Google Scholar
  58. [58]
    M. Steinhauser, MATAD: A program package for the computation of massive tadpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [SPIRES].ADSMATHCrossRefGoogle Scholar
  59. [59]
    R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Dimensional reduction applied to QCD at three loops, JHEP 09 (2006) 053 [hep-ph/0607240] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 [hep-ph/0610206] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY-QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two-loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev. D 72 (2005) 095009 [hep-ph/0509048] [SPIRES].ADSGoogle Scholar
  64. [64]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at \( \mathcal{O}\left( {{\alpha_b}{\alpha_s}} \right) \), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    B.C. Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, MSSM Higgs boson searches at the Tevatron and the LHC: Impact of different benchmark scenarios, Eur. Phys. J. C 45 (2006) 797 [hep-ph/0511023] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [SPIRES].ADSGoogle Scholar
  69. [69]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [SPIRES].ADSGoogle Scholar
  70. [70]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].ADSMATHCrossRefGoogle Scholar
  71. [71]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [SPIRES].ADSGoogle Scholar
  72. [72]
    R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Erratum ibid 101 (2008) 039901] [arXiv:0803.0672] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    D. de Florian and M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [SPIRES].ADSGoogle Scholar
  74. [74]
    J. Baglio and A. Djouadi, Higgs production at the LHC, arXiv:1012.0530 [SPIRES].
  75. [75]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, bsγ and supersymmetry with large tan β, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [SPIRES].ADSGoogle Scholar
  78. [78]
    M. Spira, HIGLU: A Program for the Calculation of the Total Higgs Production Cross Section at Hadron Colliders via Gluon Fusion including QCD Corrections, hep-ph/9510347 [SPIRES].
  79. [79]
    U. Langenegger, M. Spira, A. Starodumov and P. Trueb, SM and MSSM Higgs boson production: Spectra at large transverse momentum, JHEP 06 (2006) 035 [hep-ph/0604156] [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].ADSGoogle Scholar
  81. [81]
    C. Anastasiou, R. Boughezal and E. Furlan, The NNLO gluon fusion Higgs production cross-section with many heavy quarks, JHEP 06 (2010) 101 [arXiv:1003.4677] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    Q. Li, M. Spira, J. Gao and C.S. Li, Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations, arXiv:1011.4484 [SPIRES].
  83. [83]
    R. Fok and G.D. Kribs, Four Generations, the Electroweak Phase Transition and Supersymmetry, Phys. Rev. D 78 (2008) 075023 [arXiv:0803.4207] [SPIRES].ADSGoogle Scholar
  84. [84]
    S. Litsey and M. Sher, Higgs Masses in the Four Generation MSSM, Phys. Rev. D 80 (2009) 057701 [arXiv:0908.0502] [SPIRES].ADSGoogle Scholar
  85. [85]
    S. Dawson and P. Jaiswal, Four Generations, Higgs Physics and the MSSM, Phys. Rev. D 82 (2010) 073017 [arXiv:1009.1099] [SPIRES].ADSGoogle Scholar
  86. [86]
    CDF collaboration, T. Aaltonen et al., Search for New Bottomlike Quark Pair Decays \( Q\bar{Q} \to \left( {t{W^\mp }} \right)\left( {\bar{t}{W^\pm }} \right) \) in Same-Charge Dilepton Events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [SPIRES].ADSCrossRefGoogle Scholar
  87. [87]
    CDF collaboration, D. Cox, Search for a heavy top t′Wq in top events, arXiv:0910.3279 [SPIRES].
  88. [88]

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Robert V. Harlander
    • 1
  • Franziska Hofmann
    • 1
  • Hendrik Mantler
    • 1
  1. 1.Fachbereich CBergische Universität WuppertalWuppertalGermany

Personalised recommendations