Journal of High Energy Physics

, 2011:47 | Cite as

Sparticle spectrum of large volume compactification

  • Kiwoon Choi
  • Hans Peter Nilles
  • Chang Sub Shin
  • Michele Trapletti


We examine the large volume compactification of Type IIB string theory or its F theory limit and the associated supersymmetry breakdown and soft terms. It is crucial to incorporate the loop-induced moduli mixing, originating from radiative corrections to the Kähler potential. We show that in the presence of moduli mixing, soft scalar masses generically receive a D-term contribution of the order of the gravitino mass m 3/2 when the visible sector cycle is stabilized by the D-term potential of an anomalous U(1) gauge symmetry, while the moduli-mediated gaugino masses and A-parameters tend to be of the order of m 3/2/8π 2. It is noticed also that a too large moduli mixing can destabilize the large volume solution by making it a saddle point.


Flux compactifications Supersymmetry Breaking Supergravity Models 


  1. [1]
    J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the Low-Energy D = 4, N = 1 Supergravity Theory Extracted from the D = 10, N = 1 Superstring, Phys. Lett. B 155 (1985) 65 [SPIRES].ADSGoogle Scholar
  2. [2]
    J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the Low-Energy Limit of Superstring Theories, Nucl. Phys. B 267 (1986) 365 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino Condensation in Superstring Models, Phys. Lett. B 156 (1985) 55 [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Endo, M. Yamaguchi and K. Yoshioka, A bottom-up approach to moduli dynamics in heavy gravitino scenario: Superpotential, soft terms and sparticle mass spectrum, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036] [SPIRES].ADSGoogle Scholar
  11. [11]
    A. Falkowski, O. Lebedev and Y. Mambrini, SUSY Phenomenology of KKLT Flux Compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    O. Loaiza-Brito, J. Martin, H.P. Nilles and M. Ratz, log(M(Pl/m(3/2))), AIP Conf. Proc. 805 (2006) 198 [hep-th/0509158] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F.Quevedo, Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J.P. Conlon, F.Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    K. Choi and K.S. Jeong, String theoretic QCD axion with stabilized saxion and the pattern of supersymmetry breaking, JHEP 01 (2007) 103 [hep-th/0611279] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing All Kähler Moduli in Type IIB Orientifolds, JHEP 12 (2010) 056 [arXiv:1003.1982] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    K. Choi, K.S. Jeong, K. Okumura and M. Yamaguchi, Mixed mediation of SUSY breaking with anomalous U(1) gauge symmetry, to appear.Google Scholar
  19. [19]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J.P. Conlon and F.G. Pedro, Moduli Redefinitions and Moduli Stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    L.E. Ibáñez and H.P. Nilles, Low-Energy Remnants of Superstring Anomaly Cancellation Terms, Phys. Lett. B 169 (1986) 354 [SPIRES].ADSGoogle Scholar
  22. [22]
    K. Choi, Supersymmetry breaking for the observable sector in superstring models, Z. Phys. C 39 (1988) 219 [SPIRES].ADSGoogle Scholar
  23. [23]
    H.P. Nilles, M. Olechowski and M. Yamaguchi, Supersymmetry breaking and soft terms in M-theory, Phys. Lett. B 415 (1997) 24 [hep-th/9707143] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    H.P. Nilles, M. Olechowski and M. Yamaguchi, Supersymmetry breakdown at a hidden wall, Nucl. Phys. B 530 (1998) 43 [hep-th/9801030] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A. Lukas, B.A. Ovrut and D. Waldram, On the four-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B 532 (1998) 43 [hep-th/9710208] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    K. Choi, H.B. Kim and C. Muñoz, Four-dimensional effective supergravity and soft terms in M-theory, Phys. Rev. D 57 (1998) 7521 [hep-th/9711158] [SPIRES].ADSGoogle Scholar
  27. [27]
    J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, On loop corrections to string effective field theories: Field dependent gauge couplings and σ-model anomalies, Nucl. Phys. B 372 (1992) 145 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    K. Choi, J.E. Kim and H.P. Nilles, Cosmological constant and soft terms in supergravity, Phys. Rev. Lett. 73 (1994) 1758 [hep-ph/9404311] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos Terms in String Theory, Nucl. Phys. B 289 (1987) 589 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    M. Dine, I. Ichinose and N. Seiberg, F terms and d Terms in String Theory, Nucl. Phys. B 293 (1987) 253 [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    R.D. Peccei and H.R. Quinn, Constraints Imposed By CP Conservation In The Presence Of Instantons, Phys. Rev. D 16 (1977) 1791 [SPIRES].ADSGoogle Scholar
  34. [34]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    N. Arkani-Hamed, M. Dine and S.P. Martin, Dynamical supersymmetry breaking in models with a Green-Schwarz mechanism, Phys. Lett. B 431 (1998) 329 [hep-ph/9803432] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    T. Barreiro, B. de Carlos, J.A. Casas and J.M. Moreno, Anomalous U(1), gaugino condensation and supergravity, Phys. Lett. B 445 (1998) 82 [hep-ph/9808244] [SPIRES].ADSGoogle Scholar
  37. [37]
    K. Choi and K.S. Jeong, Supersymmetry breaking and moduli stabilization with anomalous U(1) gauge symmetry, JHEP 08 (2006) 007 [hep-th/0605108] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [SPIRES].ADSGoogle Scholar
  43. [43]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [SPIRES].Google Scholar
  44. [44]
    J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    H. Murayama, H. Suzuki and T. Yanagida, Radiative breaking of Peccei-Quinn symmetry at the intermediate mass scale, Phys. Lett. B 291 (1992) 418 [SPIRES].ADSGoogle Scholar
  46. [46]
    K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [SPIRES].ADSGoogle Scholar
  48. [48]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995) 747] [hep-ph/9308271] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    Y. Kawamura and T. Kobayashi, Soft Scalar Masses in String Models with Anomalous U(1) symmetry, Phys. Lett. B 375 (1996) 141 [Erratum ibid. B 388 (1996) 867] [hep-ph/9601365] [SPIRES].ADSGoogle Scholar
  50. [50]
    P. Binetruy and E. Dudas, Gaugino condensation and the anomalous U(1), Phys. Lett. B 389 (1996) 503 [hep-th/9607172] [SPIRES].ADSGoogle Scholar
  51. [51]
    G.R. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    T. Higaki, Y. Kawamura, T. Kobayashi and H. Nakano, Anomalous U(1) D-term contribution in type-I string models, Phys. Rev. D 69 (2004) 086004 [hep-ph/0308110] [SPIRES].MathSciNetADSGoogle Scholar
  53. [53]
    B. Körs and P. Nath, Hierarchically split supersymmetry with Fayet-Iliopoulos D-terms in string theory, Nucl. Phys. B 711 (2005) 112 [hep-th/0411201] [SPIRES].ADSGoogle Scholar
  54. [54]
    K.S. Babu, T. Enkhbat and B. Mukhopadhyaya, Split supersymmetry from anomalous U(1), Nucl. Phys. B 720 (2005) 47 [hep-ph/0501079] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    E. Dudas and S.K. Vempati, Large D-terms, hierarchical soft spectra and moduli stabilisation, Nucl. Phys. B 727 (2005) 139 [hep-th/0506172] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    C.A. Scrucca, Soft masses in superstring models with anomalous U(1) symmetries, JHEP 12 (2007) 092 [arXiv:0710.5105] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni and M. Trapletti, Gauge vs. Gravity mediation in models with anomalous U(1)’s, JHEP 03 (2009) 011 [arXiv:0809.5064] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric Technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, Phys. Lett. B 110 (1982) 227 [SPIRES].ADSGoogle Scholar
  61. [61]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].ADSGoogle Scholar
  62. [62]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].ADSGoogle Scholar
  63. [63]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    Y. Kawamura, Model independent analysis of soft masses in heterotic string models with anomalous U(1) symmetry, Phys. Lett. B 446 (1999) 228 [hep-ph/9811312] [SPIRES].MathSciNetADSGoogle Scholar
  65. [65]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    J.P. Conlon, M. Goodsell and E. Palti, Anomaly Mediation in Superstring Theory, arXiv:1008.4361 [SPIRES].
  68. [68]
    J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP 04 (2000) 009 [hep-th/9911029] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    K. Choi and H.P. Nilles, The gaugino code, JHEP 04 (2007) 006 [hep-ph/ 0702146] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    K. Choi, C.S. Shin and H.P. Nilles, Anomalous U(1) mediation and axion in large volume compactification, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Kiwoon Choi
    • 1
  • Hans Peter Nilles
    • 2
  • Chang Sub Shin
    • 1
  • Michele Trapletti
    • 2
  1. 1.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonS. Korea
  2. 2.Bethe Center for Theoretical Physics and Physikalisches InstitutUniversität BonnBonnGermany

Personalised recommendations