Advertisement

Journal of High Energy Physics

, 2011:40 | Cite as

Probing boundary-corrections to Nambu-Goto open string energy levels in 3d SU(2) gauge theory

  • Bastian B. Brandt
Article

Abstract

We measure the energy levels of the excitations of the flux tube between static quark and antiquark in three-dimensional SU(2) gauge theory. Combining exponential error reduction techniques and a variational method we are able to reduce the errors for the excited states significantly and to extract excited states in distinct parity and charge conjugation channels. It is conjectured that the infrared behavior (at large \( q\overline q \) separation R) of the flux tube is governed by an effective string theory. Indeed previous simulations show good agreement between lattice data and predictions from Nambu-Goto string theory. Recently, new results on the effective string theory obtained corrections to the Nambu-Goto predictions and showed that for the open string in three dimensions first corrections should appears at order 1/R 4. They correspond to boundary terms in the worldsheet field theory. These corrections are presumably small for the ground state, but significantly larger for the excited states and lift the degeneracies of the free theory. Assuming this functional form of the correction, we obtain for the coefficient b2 = −0.5(2)(2).

Keywords

Confinement Lattice Gauge Field Theories Bosonic Strings Long strings 

References

  1. [1]
    G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1 [hep-ph/0001312] [SPIRES].ADSMATHCrossRefGoogle Scholar
  2. [2]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    J.M. Drummond, Universal subleading spectrum of effective string theory, hep-th/0411017 [SPIRES].
  5. [5]
    J.M. Drummond, Reply to hep-th/0606265, hep-th/0608109 [SPIRES].
  6. [6]
    N.D. Hari Dass and P. Matlock, Universality of correction to Lüscher term in Polchinski-Strominger effective string theories, hep-th/0606265 [SPIRES].
  7. [7]
    N.D. Hari Dass and P. Matlock, Our response to the response hep-th/0608109 by Drummond, hep-th/0611215 [SPIRES].
  8. [8]
    N.D. Hari Dass and P. Matlock, Field definitions, spectrum and universality in effective string theories, hep-th/0612291 [SPIRES].
  9. [9]
    F. Maresca, Comparing the excitations of the periodic flux tube with effective string models, Ph.D. Thesis, Trinity College, Dublin Ireland (2004).Google Scholar
  10. [10]
    N.D. Hari Dass, P. Matlock and Y. Bharadwaj, Spectrum to all orders of Polchinski-Strominger effective string theory of Polyakov-Liouville type, arXiv:0910.5615 [SPIRES].
  11. [11]
    N.D. Hari Dass and Y. Bharadwaj, Spectrum to all orders of Polchinski-Strominger effective string theories of the Drummond type, arXiv:0910.5620 [SPIRES].
  12. [12]
    N.D.H. Dass, All conformal effective string theories are isospectral to Nambu-Goto theory, arXiv:0911.3236 [SPIRES].
  13. [13]
    O. Alvarez, The static potential in string models, Phys. Rev. D 24 (1981) 440 [SPIRES].ADSGoogle Scholar
  14. [14]
    J.F. Arvis, The exact \( q\overline q \) potential in Nambu string theory, Phys. Lett. B 127 (1983) 106 [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP 07 (2002) 049 [hep-lat/0207003] [SPIRES].CrossRefGoogle Scholar
  16. [16]
    M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP 06 (2009) 012 [arXiv:0903.1927] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    O. Aharony, M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065 [arXiv:1008.2636] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    H.B. Meyer, Poincaré invariance in effective string theories, JHEP 05 (2006) 066 [hep-th/0602281] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    J. Kuti, Lattice QCD and string theory, PoS(LAT2005)001 [hep-lat/0511023] [SPIRES].
  22. [22]
    K.J. Juge, J. Kuti and C. Morningstar, Fine structure of the QCD string spectrum, Phys. Rev. Lett. 90 (2003) 161601 [hep-lat/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    K.J. Juge, J. Kuti and C. Morningstar, Excitations of the static quark antiquark system in several gauge theories, in Proceedings of Wako 2003, Color confinement and hadrons in quantum chromodynamics [hep-lat/0312019] [SPIRES].
  24. [24]
    K.J. Juge, J. Kuti and C. Morningstar, QCD string formation and the Casimir energy, in Proceedings of Wako 2003, Color confinement and hadrons in quantum chromodynamics [hep-lat/0401032] [SPIRES].
  25. [25]
    A. Athenodorou, B. Bringoltz and M. Teper, The closed string spectrum of SU(N) gauge theories in 2+1 dimensions, Phys. Lett. B 656 (2007) 132 [arXiv:0709.0693] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D=3+1 SU(N) gauge theories, arXiv:1007.4720 [SPIRES].
  27. [27]
    F. Gliozzi, M. Pepe and U.-J. Wiese, The width of the confining string in Yang-Mills theory, Phys. Rev. Lett. 104 (2010) 232001 [arXiv:1002.4888] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    F. Gliozzi, M. Pepe and U.-J. Wiese, Linear broadening of the confining string in Yang-Mills theory at low temperature, arXiv:1010.1373 [SPIRES].
  29. [29]
    B.B. Brandt and P. Majumdar, Lüscher-Weisz algorithm for excited states of the QCD flux-tube, PoS(LATTICE 2007)027 [arXiv:0709.3379] [SPIRES].
  30. [30]
    B.B. Brandt and P. Majumdar, Spectrum of the QCD flux tube in 3d SU(2) lattice gauge theory, Phys. Lett. B 682 (2009) 253 [arXiv:0905.4195] [SPIRES].ADSGoogle Scholar
  31. [31]
    M. Lüscher and P. Weisz, Locality and exponential error reduction in numerical lattice gauge theory, JHEP 09 (2001) 010 [hep-lat/0108014] [SPIRES].CrossRefGoogle Scholar
  32. [32]
    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    N.D. Hari Dass and P. Majumdar, Continuum limit of string formation in 3-d SU(2) LGT, Phys. Lett. B 658 (2008) 273 [hep-lat/0702019] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    N.D. Hari Dass and P. Majumdar, String-like behaviour of 4-D SU(3) Yang-Mills flux tubes, JHEP 10 (2006) 020 [hep-lat/0608024] [SPIRES].MathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Majumdar, The string spectrum from large Wilson loops, Nucl. Phys. B 664 (2003) 213 [hep-lat/0211038] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    P. Majumdar, Continuum limit of the spectrum of the hadronic string, hep-lat/0406037 [SPIRES].
  37. [37]
    S. Kratochvila and P. de Forcrand, Observing string breaking with Wilson loops, Nucl. Phys. B 671 (2003) 103 [hep-lat/0306011] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer, On the generalized eigenvalue method for energies and matrix elements in lattice field theory, JHEP 04 (2009) 094 [arXiv:0902.1265] [SPIRES].Google Scholar
  39. [39]
    G.H. Golub, C.F. Van Loan, Matrix computations, third edition, The Johns Hopkins University Press, Baltimore U.S.A. (1996).MATHGoogle Scholar
  40. [40]
    M.J. Teper, SU(N) gauge theories in (2+1)-dimensions, Phys. Rev. D 59 (1999) 014512 [hep-lat/9804008] [SPIRES].ADSGoogle Scholar
  41. [41]
    P. Giudice, F. Gliozzi and S. Lottini, The confining string beyond the free-string approximation in the gauge dual of percolation, JHEP 03 (2009) 104 [arXiv:0901.0748] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Galassi et al., GNU scientific library reference manual, third edition (2009), [ISBN 0954612078] http://www.gnu.org/software/gsl/.

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für KernphysikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations