Advertisement

Journal of High Energy Physics

, Volume 2011, Issue 2, pp 1–45 | Cite as

Twisted Bethe equations from a twisted S-matrix

  • Changrim Ahn
  • Zoltan Bajnok
  • Diego Bombardelli
  • Rafael I. Nepomechie
Article

Abstract

All-loop asymptotic Bethe equations for a 3-parameter deformation of AdS 5/CFT 4 have been proposed by Beisert and Roiban. We propose a Drinfeld-Reshetikhin twist of the AdS 5/CFT 4 S-matrix, together with c-number diagonal twists of the boundary conditions, from which we derive these Bethe equations. Although the undeformed S-matrix factorizes into a product of two su(2|2) factors, the deformed S-matrix cannot be so factored. Diagonalization of the corresponding transfer matrix requires a generalization of the conventional algebraic Bethe ansatz approach, which we first illustrate for the simpler case of the twisted su(2) principal chiral model. We also demonstrate that the transfer matrix is spectrally equivalent to a transfer matrix which is constructed using instead untwisted S-matrices and boundary conditions with operatorial twists.

Keywords

Lattice Integrable Models AdS-CFT Correspondence Exact S-Matrix Bethe Ansatz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Kristjansen, M. Staudacher and A. Tseytlin, Gauge-string duality and integrability: progress and outlook, J. Phys. A 42 (2009) 250301. MathSciNetADSGoogle Scholar
  2. [2]
    D. Serban, Integrability and the AdS/CFT correspondence, arXiv:1003.4214 [SPIRES].
  3. [3]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, arXiv:1012.3982 [SPIRES].
  4. [4]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional \( \mathcal{N} = 1 \) supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    D. Berenstein and S.A. Cherkis, Deformations of \( \mathcal{N} = 4 \) SYM and integrable spin chain models, Nucl. Phys. B 702 (2004) 49 [hep-th/0405215] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal deformations of \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    N. Beisert and R. Roiban, Beauty and the twist: The Bethe ansatz for twisted \( \mathcal{N} = 4 \) SYM, JHEP 08 (2005) 039 [hep-th/0505187] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D.V. Bykov and S. Frolov, Giant magnons in TsT-transformed AdS 5 × S 5, JHEP 07 (2008) 071 [arXiv:0805.1070] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Finite-size effects in the superconformal β-deformed \( \mathcal{N} = 4 \) SYM, JHEP 08 (2008) 057 [arXiv:0806.2103] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Single impurity operators at critical wrapping order in the beta-deformed \( \mathcal{N} = 4 \) SYM, JHEP 08 (2009) 034 [arXiv:0811.4594] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    J. Gunnesson, Wrapping in maximally supersymmetric and marginally deformed \( \mathcal{N} = 4 \) Yang-Mills, JHEP 04 (2009) 130 [arXiv:0902.1427] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    M. Beccaria and G.F. De Angelis, On the wrapping correction to single magnon energy in twisted \( \mathcal{N} = 4 \) SYM, Int. J. Mod. Phys. A 24 (2009) 5803 [arXiv:0903.0778] [SPIRES].ADSGoogle Scholar
  15. [15]
    C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, Finite-size effect for four-loop Konishi of the β-deformed \( \mathcal{N} = 4 \) SYM, Phys. Lett. B 693 (2010) 380 [arXiv:1006.2209] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    N. Gromov and F. Levkovich-Maslyuk, Y-system and β-deformed \( \mathcal{N} = 4 \) super-Yang-Mills, J. Phys. A 44 (2011) 015402 [arXiv:1006.5438] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, Twisting the Mirror TBA, arXiv:1009.4118 [SPIRES].
  18. [18]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansaetze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Beisert, The su(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  21. [21]
    N. Beisert, The Analytic Bethe Ansatz for a Chain with Centrally Extended su(2|2) Symmetry, J. Stat. Mech. 0701 (2007) 017 [nlin/0610017].Google Scholar
  22. [22]
    G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  25. [25]
    G. Arutyunov and S. Frolov, On String S-matrix, Bound States and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 Superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    M.J. Martins and C.S. Melo, The Bethe ansatz approach for factorizable centrally extended S-matrices, Nucl. Phys. B 785 (2007) 246 [hep-th/0703086] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    V.G. Drinfeld, On constant quasi-classical solutions of the Yang-Baxter quantum equation, Sov. Math. Dokl. 28 (1983) 667.Google Scholar
  29. [29]
    V.G. Drinfeld, Quantum Groups, in Proceedings of the International Congress of Mathematicians Berkeley 1986, A.M. Gleason eds., Am. Math. Society, New York U.S.A. (1988).Google Scholar
  30. [30]
    V.G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419.MathSciNetGoogle Scholar
  31. [31]
    N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990) 331 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    M.J. Martins and P.B. Ramos, The Quantum Inverse Scattering Method for Hubbard-like Models, Nucl. Phys. B 522 (1998) 413 [solv-int/9712014].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    N. Gromov, V. Kazakov and Z. Tsuboi, PSU(2, 2|4) Character of Quasiclassical AdS/CFT, JHEP 07 (2010) 097 [arXiv:1002.3981] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar \( \mathcal{N} = 4 \) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    N. Gromov, Y-system and Quasi-Classical Strings, JHEP 01 (2010) 112 [arXiv:0910.3608] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Foerster, J. Links and I. Roditi, Integrable multiparametric quantum spin chains, J. Phys. A 31 (1988) 687 [cond-mat/9801175].MathSciNetADSGoogle Scholar
  37. [37]
    I. Roditi, Integrable Systems and Quantum Groups, Braz. J. Phys. 30 (2000) 357.CrossRefGoogle Scholar
  38. [38]
    J. Links and A. Foerster, Transfer matrix eigenvalues of the anisotropic multiparametric U model, J. Phys. A 34 (2001) 5835 [cond-mat/0008352].MathSciNetADSGoogle Scholar
  39. [39]
    A. Kundu, Integrability and exact solution of correlated hopping multi-chain electron systems, Nucl. Phys. B 618 (2001) 500 [cond-mat/0106345] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L. Hlavaty and A. Kundu, Quantum integrability of nonultralocal models through Baxterization of quantized braided algebra, Int. J. Mod. Phys. A 11 (1996) 2143 [hep-th/9406215] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    A. Kundu, Exact Bethe ansatz solution of nonultralocal quantum mKdV model, Mod. Phys. Lett. A 10 (1995) 2955 [hep-th/9510131] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    D. Fioravanti and M. Rossi, A braided Yang-Baxter algebra in a theory of two coupled lattice quantum KDV: Algebraic properties and ABA representations, J. Phys. A 35 (2002) 3647 [hep-th/0104002] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    D. Fioravanti and M. Rossi, From the braided to the usual Yang-Baxter relation, J. Phys. A 34 (2001) L567 [hep-th/0107050] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Relativistic Factorized S Matrix in Two-Dimensions Having O(N) Isotopic Symmetry, Nucl. Phys. B 133 (1978) 525 [JETP Lett. 26 (1977) 457] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Massless factorized scattering and σ-models with topological terms, Nucl. Phys. B 379 (1992) 602 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    E.K. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys. A 21 (1988) 2375 [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    N. Gromov, V. Kazakov, K. Sakai and P. Vieira, Strings as multi-particle states of quantum σ-models, Nucl. Phys. B 764 (2007) 15 [hep-th/0603043] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    B.S. Shastry, Exact Integrability of the One-Dimensional Hubbard Model, Phys. Rev. Lett. 56 (1986) 2453 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    B.S. Shastry, Decorated star-triangle relations and exact integrability of the one-dimensional Hubbard model, J. Stat. Phys. 50 (1988) 57. MathSciNetADSMATHCrossRefGoogle Scholar
  50. [50]
    L.D. Faddeev, How Algebraic Bethe Ansatz works for integrable model, hep-th/9605187 [SPIRES].
  51. [51]
    R.I. Nepomechie, A Spin Chain Primer, Int. J. Mod. Phys. B 13 (1999) 2973 [hep-th/9810032] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    F.H.L. Essler, H. Frahm, F. Göhmann, A. Klümper and V.E. Korepin, The One-Dimensional Hubbard Model, Cambridge Univ. Press, Cambridge U.K. (2005).MATHCrossRefGoogle Scholar
  53. [53]
    Z. Bajnok, Equivalences between spin models induced by defects, J. Stat. Mech. (2006) P06010 [hep-th/0601107] [SPIRES].Google Scholar
  54. [54]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in \( \mathcal{N} = 4 \) SYM at one loop, JHEP 07 (2005) 030 [hep-th/0503200] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    N. Gromov and P. Vieira, Complete 1-loop test of AdS/CFT, JHEP 04 (2008) 046 [arXiv:0709.3487] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Changrim Ahn
    • 1
  • Zoltan Bajnok
    • 2
  • Diego Bombardelli
    • 1
    • 3
  • Rafael I. Nepomechie
    • 4
  1. 1.Department of Physics and Institute for the Early UniverseEwha Womans UniversitySeoulS. Korea
  2. 2.Theoretical Physics Research GroupHungarian Academy of SciencesBudapestHungary
  3. 3.Physics Department and Theoretical Physics CenterUniversity of PortoPortoPortugal
  4. 4.Physics DepartmentUniversity of MiamiCoral GablesU.S.A.

Personalised recommendations