Journal of High Energy Physics

, Volume 2011, Issue 2, pp 1–27 | Cite as

Vacuum stability, string density of states and the Riemann zeta function

  • Carlo Angelantonj
  • Matteo Cardella
  • Shmuel Elitzur
  • Eliezer Rabinovici
Open Access


We study the distribution of graded degrees of freedom in classically stable oriented closed string vacua and use the Rankin-Selberg transform to link it to the finite one-loop vacuum energy. In particular, we find that the spectrum of physical excitations not only must enjoy asymptotic supersymmetry but actually, at very large mass, bosonic and fermionic states must follow a universal oscillating pattern, whose frequencies are related to the zeros of the Riemann ζ-function. Moreover, the convergence rate of the overall number of the graded degrees of freedom to the value of the vacuum energy is determined by the Riemann hypothesis. We discuss also attempts to obtain constraints in the case of tachyon-free open-string theories.


Superstrings and Heterotic Strings Superstring Vacua 


  1. [1]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [SPIRES].ADSGoogle Scholar
  2. [2]
    S. Elitzur, E. Rabinovici and G. Sarkissian, On least action D-branes, Nucl. Phys. B 541 (1999) 246 [hep-th/9807161] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    I. Antoniadis and C. Kounnas, Superstring phase transition at high temperature, Phys. Lett. B 261 (1991) 369 [SPIRES].ADSGoogle Scholar
  5. [5]
    D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT, Nucl. Phys. B 358 (1991) 600 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K.R. Dienes, Modular invariance, finiteness and misaligned supersymmetry: new constraints on the numbers of physical string states, Nucl. Phys. B 429 (1994) 533 [hep-th/9402006] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    K.R. Dienes, M. Moshe and R.C. Myers, String theory, misaligned supersymmetry and the supertrace constraints, Phys. Rev. Lett. 74 (1995) 4767 [hep-th/9503055] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    S.L. Cacciatori and M. Cardella, Equidistribution rates, closed string amplitudes and the Riemann hypothesis, JHEP 12 (2010) 025 [arXiv:1007.3717] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. Cardella, Error estimates in horocycle averages asymptotics: challenges from string theory, arXiv:1012.2754 [SPIRES].
  10. [10]
    D. Zagier, Eisenstein series and the Riemann Zeta-function, in Automorphic forms, representation theory and arithmetic: papers, presented at the Bombay Colloquium 1979, Springer-Verlag (1981), pg. 303–355.Google Scholar
  11. [11]
    M. Ratner, Distribution rigidity for unipotent actions on homogeneous spaces, Bull. Amer. Math. Soc. 24 (1991) 321. MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235. MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    R. Rankin, Contributions to the theory of Ramanujan’s functions τ(n) and similar arithmetic functions, I, Proc. Cambridge Philos. Soc. 35 (1939) 351.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940) 47.MathSciNetGoogle Scholar
  15. [15]
    D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math 28 (1981) 415.MathSciNetMATHGoogle Scholar
  16. [16]
    M. Cardella, A novel method for computing torus amplitudes for \( {\mathbb{Z}_N} \) orbifolds without the unfolding technique, JHEP 05 (2009) 010 [arXiv:0812.1549] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Sagnotti, Some properties of open string theories, hep-th/9509080 [SPIRES].
  18. [18]
    A. Sagnotti, Surprises in open-string perturbation theory, Nucl. Phys. Proc. Suppl. 56B (1997) 332 [hep-th/9702093] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    C. Angelantonj, Non-tachyonic open descendants of the 0B string theory, Phys. Lett. B 444 (1998) 309 [hep-th/9810214] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    D. Israel and V. Niarchos, Tree-level stability without spacetime fermions: novel examples in string theory, JHEP 07 (2007) 065 [arXiv:0705.2140] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M.B. Green and P. Vanhove, The low energy expansion of the one-loop type II superstring amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    C. Angelantonj, M. Cardella and N. Irges, An alternative for moduli stabilisation, Phys. Lett. B 641 (2006) 474 [hep-th/0608022] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    C. Angelantonj, C. Kounnas, H. Partouche and N. Toumbas, Resolution of Hagedorn singularity in superstrings with gravito-magnetic fluxes, Nucl. Phys. B 809 (2009) 291 [arXiv:0808.1357] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys. B 310 (1988) 291 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J.L.F. Barbon and E. Rabinovici, Touring the Hagedorn ridge, hep-th/0407236 [SPIRES].
  26. [26]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: Introduction, Cambridge University Press, Cambridge U.K. (1987) [SPIRES].MATHGoogle Scholar
  27. [27]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: Loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987) [SPIRES].MATHGoogle Scholar
  28. [28]
    T. Catelin-Jullien, C. Kounnas, H. Partouche and N. Toumbas, Thermal/quantum effects and induced superstring cosmologies, Nucl. Phys. B 797 (2008) 137 [arXiv:0710.3895] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    T. Catelin-Jullien, C. Kounnas, H. Partouche and N. Toumbas, Induced superstring cosmologies and moduli stabilization, Nucl. Phys. B 820 (2009) 290 [arXiv:0901.0259] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    I. Florakis, C. Kounnas, H. Partouche and N. Toumbas, Non-singular string cosmology in a 2d Hybrid model, Nucl. Phys. B 844 (2011) 89 [arXiv:1008.5129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    E. de Rafael, Large-Nc QCD, harmonic sums and the Riemann zeros, arXiv:1010.4657 [SPIRES].
  32. [32]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003) 339] [hep-th/0204089] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    L. Álvarez-Gaumé, P.H. Ginsparg, G.W. Moore and C. Vafa, An O(16) × O(16) heterotic string, Phys. Lett. B 171 (1986) 155 [SPIRES].ADSGoogle Scholar
  34. [34]
    J.-P. Serre, A course in arithmetic, Springer-Verlag, New York U.S.A. (1973).MATHGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Carlo Angelantonj
    • 1
  • Matteo Cardella
    • 2
  • Shmuel Elitzur
    • 3
  • Eliezer Rabinovici
    • 3
  1. 1.Dipartimento di Fisica TeoricaUniversità di Torino, and INFN, Sezione di TorinoTorinoItaly
  2. 2.Instituut voor Theoretische FysicaUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael

Personalised recommendations