Journal of High Energy Physics

, Volume 2011, Issue 2, pp 1–22 | Cite as

On RR couplings on D-branes at order O(α ′2)



Recently, it has been found that there are couplings of the RR field strength F (p) and the B-field strength H on the world volume of D p -branes at order \( \mathcal{O}\left( {{\alpha^{{\prime}2}}} \right) \). These couplings which have both world-volume and transverse indices, are invariant under the linear T-duality transformations. Consistency with the nonlinear T-duality indicates that the RR field strength F (p) in these couplings should be replaced by \( {\mathcal{F}^{(p)}} = d{\mathcal{C}^{\left( {p - 1} \right)}} \) where \( \mathcal{C} = {e^B}C \). This replacement, however, produces some non-gauge invariant terms. On the other hand, the nonlinear terms are invariant under the linear T-duality transformations at the level of two B-fields. This allows one to remove some of the nonlinear terms in \( {\mathcal{F}^{(p)}} \). We fix this by comparing the nonlinear couplings with the S-matrix element of one RR and two NSNS vertex operators. Our results indicate that in the expansion of \( {\mathcal{F}^{(p)}} \) one should keep only the B-field gauge invariant terms, e.g., BdC (p−3) where both indices of B-field lie along the brane. Moreover, in this case one should replace B with B + 2παf to have the B-field gauge invariance.


D-branes String Duality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.G. Leigh, Dirac-Born-Infeld Action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M.R. Garousi and R.C. Myers, Superstring Scattering from D-branes, Nucl. Phys. B 475 (1996) 193 [hep-th/9603194] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Hashimoto and I.R. Klebanov, Decay of Excited D-branes, Phys. Lett. B 381 (1996) 437 [hep-th/9604065] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    M.R. Garousi, T-duality of Curvature terms in D-brane actions, JHEP 02 (2010) 002 [arXiv:0911.0255] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    M.R. Douglas, Branes within branes, hep-th/9512077 [SPIRES].
  9. [9]
    M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    Y.-K.E. Cheung and Z. Yin, Anomalies, branes and currents, Nucl. Phys. B 517 (1998) 69 [hep-th/9710206] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    R. Minasian and G.W. Moore, K-theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    K. Becker, G. Guo and D. Robbins, Higher Derivative Brane Couplings from T-duality, JHEP 09 (2010) 029 [arXiv:1007.0441] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.R. Garousi, T-duality of anomalous Chern-Simons couplings, arXiv:1007.2118 [SPIRES].
  14. [14]
    M.R. Garousi, Ramond-Ramond field strength couplings on D-branes, JHEP 03 (2010) 126 [arXiv:1002.0903] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Billó et al., Microscopic string analysis of the D0-D8 brane system and dual RR states, Nucl. Phys. B 526 (1998) 199 [hep-th/9802088] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    H. Liu and J. Michelson, *-trek III: The search for Ramond-Ramond couplings, Nucl. Phys. B 614 (2001) 330 [hep-th/0107172] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M.R. Garousi and E. Hatefi, More on WZ action of non-BPS branes, JHEP 03 (2009) 008 [arXiv:0812.4216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D. Haertl, O. Schlotterer and S. Stieberger, Higher Point Spin Field Correlators in D = 4 Superstring Theory, Nucl. Phys. B 834 (2010) 163 [arXiv:0911.5168] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    D. Haertl and O. Schlotterer, Higher Loop Spin Field Correlators in Various Dimensions, arXiv:1011.1249 [SPIRES].
  20. [20]
    B. Craps and F. Roose, Anomalous D-brane and orientifold couplings from the boundary state, Phys. Lett. B 445 (1998) 150 [hep-th/9808074] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    M.R. Garousi, Disk level S-matrix elements at eikonalRegge limit, Phys. Lett. B 696 (2011) 291 [arXiv:1010.4950] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    T. Huber and D. Maître, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/ 0507094] [SPIRES].ADSMATHCrossRefGoogle Scholar
  23. [23]
    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York U.S.A. (1994).MATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsFerdowsi University of MashhadMashhadIran

Personalised recommendations