Advertisement

Journal of High Energy Physics

, 2010:84 | Cite as

Jet trimming

  • David Krohn
  • Jesse Thaler
  • Lian-Tao Wang
Open Access
Article

Abstract

Initial state radiation, multiple interactions, and event pileup can contaminate jets and degrade event reconstruction. Here we introduce a procedure, jet trimming, designed to mitigate these sources of contamination in jets initiated by light partons. This procedure is complimentary to existing methods developed for boosted heavy particles. We find that jet trimming can achieve significant improvements in event reconstruction, especially at high energy/luminosity hadron colliders like the LHC.

Keywords

Jets Hadronic Colliders QCD 

References

  1. [1]
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    G.P. Salam, Towards Jetography, arXiv:0906.1833 [SPIRES].
  3. [3]
    D. Krohn, J. Thaler and L.-T. Wang, Jets with Variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].ADSGoogle Scholar
  6. [6]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].ADSGoogle Scholar
  7. [7]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, arXiv:0910.5472 [SPIRES].
  9. [9]
    G. Brooijmans, High p t hadronic top quark identification, Thech. Rep. ATL-COM-PHYS-2008-001, ATLAS, 2008.
  10. [10]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].Google Scholar
  12. [12]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, arXiv:0912.0033 [SPIRES].
  13. [13]
    J.M. Butterworth, J.R. Ellis and A.R. Raklev, Reconstructing sparticle mass spectra using hadronic decays, JHEP 05 (2007) 033 [hep-ph/0702150] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    M. Cacciari, J. Rojo, G.P. Salam and G. Soyez, Quantifying the performance of jet definitions for kinematic reconstruction at the LHC, JHEP 12 (2008) 032 [arXiv:0810.1304] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    CDF collaboration, R.D. Field, The underlying event in hard scattering processes, hep-ph/0201192 [SPIRES].
  19. [19]
    CDF collaboration, R. Field and R.C. Group, PYTHIA tune A, HERWIG and JIMMY in Run 2 at CDF, hep-ph/0510198 [SPIRES].
  20. [20]
    M. Cacciari, G. Salam, and G. Soyez, FastJet, http://fastjet.fr/.
  21. [21]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  22. [22]
    B. Andersson, The Lund model, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997) 1.Google Scholar
  23. [23]
    ALEPH collaboration, R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1 [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better Jet Clustering Algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep- inelastic scattering, hep-ph/9907280 [SPIRES].
  26. [26]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  28. [28]
    C.K. Vermilion, FastPrune, http://bit.ly/pruning.

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.Berkeley Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  3. 3.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.

Personalised recommendations