Journal of High Energy Physics

, 2010:12 | Cite as

Fundamental strings and higher derivative corrections to d-dimensional black holes



We study aspects of d-dimensional black holes with two electric charges, corresponding to fundamental strings with generic momentum and winding on an internal circle. The perturbative α′ corrections to such black holes and their gravitational thermodynamics are obtained. The latter are derived using the Euclidean approach and the Wald formula for the entropy. We find that the entropy and the charge/mass ratio of black holes increase in α′ for any mass and charges, and in all dimensions.


Black Holes in String Theory Superstrings and Heterotic Strings 


  1. [1]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    A. Giveon and D. Gorbonos, On black fundamental strings, JHEP 10 (2006) 038 [hep-th/0606156] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    C.G. Callan, Jr., R.C. Myers and M.J. Perry, Black Holes in String Theory, Nucl. Phys. B 311 (1989) 673 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].Google Scholar
  8. [8]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    R.R. Metsaev and A.A. Tseytlin, Order alpha-prime (Two Loop) Equivalence of the String Equations of Motion and the σ-model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293 (1987) 385 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    A.A. Tseytlin, Duality and dilaton, Mod. Phys. Lett. A 6 (1991) 1721 [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    K.A. Meissner, Symmetries of higher-order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev. D 56 (1997) 7940 [hep-th/9705193] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    I. Jack and D.R.T. Jones, σ-model β-functions and ghost-free string effective actions, Nucl. Phys. B 303 (1988) 260 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quant. Grav. 21 (2004) 3447 [gr-qc/0402044] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Giveon, D. Kutasov, E. Rabinovici and A. Sever, Phases of quantum gravity in AdS 3 and linear dilaton backgrounds, Nucl. Phys. B 719 (2005) 3 [hep-th/0503121] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    R. Brustein, D. Gorbonos and M. Hadad, Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling, Phys. Rev. D 79 (2009) 044025 [arXiv:0712.3206] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada
  3. 3.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations