Defect loops in gauged Wess-Zumino-Witten models

Open Access


We consider loop observables in gauged Wess-Zumino-Witten models, and study the action of renormalization group flows on them. In the WZW model based on a compact Lie group G, we analyze at the classical level how the space of renormalizable defects is reduced upon the imposition of global and affine symmetries. We identify families of loop observables which are invariant with respect to an affine symmetry corresponding to a subgroup H of G, and show that they descend to gauge-invariant defects in the gauged model based on G/H. We study the flows acting on these families perturbatively, and quantize the fixed points of the flows exactly. From their action on boundary states, we present a derivation of the “generalized Affleck-Ludwig rule”, which describes a large class of boundary renormalization group flows in rational conformal field theories.


Boundary Quantum Field Theory Renormalization Group Field Theories in Lower Dimensions Sigma Models 


  1. [1]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory II. Q-operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. III: the Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    C.L. Kane and M.P.A. Fisher, Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas, Phys. Rev. B 46 (1992) 15233 [SPIRES].ADSGoogle Scholar
  5. [5]
    M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys. B 495 (1997) 533 [cond-mat/9612187] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    P. Fendley, M.P.A. Fisher and C. Nayak, Boundary conformal field theory and tunneling of edge quasiparticles in non-abelian topological states, Annals Phys. 324 (2009) 1547 [cond-mat/0902.0998] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  7. [7]
    K. Graham and G.M.T. Watts, Defect lines and boundary flows, JHEP 04 (2004) 019 [hep-th/0306167] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S. Fredenhagen, M.R. Gaberdiel and C. Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403 [arXiv:0907.2560] [SPIRES].Google Scholar
  10. [10]
    S. Monnier, New WZW D-branes from the algebra of Wilson loop operators, JHEP 10 (2009) 016 [arXiv:0907.2921] [SPIRES].CrossRefGoogle Scholar
  11. [11]
    I. Brunner, D. Roggenkamp and S. Rossi, Defect perturbations in Landau-Ginzburg models, arXiv:0909.0696 [SPIRES].
  12. [12]
    M. Kormos, I. Runkel and G.M.T. Watts, Defect flows in minimal models, arXiv:0907.1497 [SPIRES].
  13. [13]
    C. Bachas, On the symmetries of classical string theory, arXiv:0808.2777 [SPIRES].
  14. [14]
    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354 [hep-th/0607247] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    I. Brunner, H. Jockers and D. Roggenkamp, Defects and D-brane monodromies, arXiv:0806.4734 [SPIRES].
  17. [17]
    V.B. Petkova and J.B. Zuber, Generalised twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    T. Quella and V. Schomerus, Symmetry breaking boundary states and defect lines, JHEP 06 (2002) 028 [hep-th/0203161] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    T. Quella, I. Runkel and G.M.T. Watts, Reection and transmission for conformal defects, JHEP 04 (2007) 095 [hep-th/0611296] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    A. Alekseev and S. Monnier, Quantization of Wilson loops in Wess-Zumino-Witten models, JHEP 08 (2007) 039 [hep-th/0702174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    A. Mikhailov and S. Schäfer-Nameki, Perturbative study of the transfer matrix on the string worldsheet in AdS 5 × S 5, arXiv:0706.1525 [SPIRES].
  22. [22]
    I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    I. Runkel, Perturbed Defects and T-Systems in Conformal Field Theory, J. Phys. A 41 (2008) 105401 [arXiv:0711.0102] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    C. Bachas and I. Brunner, Fusion of conformal interfaces, JHEP 02 (2008) 085 [arXiv:0712.0076] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D. Gang and S. Yamaguchi, Superconformal defects in the tricritical Ising model, JHEP 12 (2008) 076 [arXiv:0809.0175] [SPIRES].CrossRefMathSciNetGoogle Scholar
  27. [27]
    G. Sarkissian and C. Schweigert, Some remarks on defects and T-duality, Nucl. Phys. B 819 (2009) 478 [arXiv:0810.3159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    G. Sarkissian, Defects and permutation branes in the Liouville field theory, Nucl. Phys. B 821 (2009) 607 [arXiv:0903.4422] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    P. Goddard, A. Kent and D.I. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985) 88 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    P. Goddard, A. Kent and D.I. Olive, Unitary representations of the virasoro and supervirasoro algebras, Commun. Math. Phys. 103 (1986) 105 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  31. [31]
    O. Babelon, D. Bernard, and M. Talon, Introduction to classical integrable systems, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  32. [32]
    P. Bowcock, Canonical quantization of the gauged Wess-Zumino model, Nucl. Phys. B 316 (1989) 80 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    K. Gawędzki and A. Kupiainen, G/h conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988) 119 [SPIRES].ADSGoogle Scholar
  34. [34]
    K. Gawędzki and A. Kupiainen, Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    D. Karabali, Q.-H. Park, H.J. Schnitzer and Z. Yang, A GKO construction based on a path integral formulation of gauged Wess-Zumino-Witten Actions, Phys. Lett. B 216 (1989) 307 [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    A.Y. Alekseev, A. Recknagel and V. Schomerus, Brane dynamics in background fluxes and non-commutative geometry, JHEP 05 (2000) 010 [hep-th/0003187] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    S. Monnier, D-branes in Lie groups of rank > 1, JHEP 08 (2005) 062 [hep-th/0507159] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    I. Affleck and A.W.W. Ludwig, The Kondo effect, conformal field theory and fusion rules, Nucl. Phys. B 352 (1991) 849 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys. B 278 (1986) 493 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    A. Alekseev and S.L. Shatashvili, Quantum groups and WZW models, Commun. Math. Phys. 133 (1990) 353 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  42. [42]
    A.Y. Alekseev, S. Fredenhagen, T. Quella and V. Schomerus, Non-commutative gauge theory of twisted D-branes, Nucl. Phys. B 646 (2002) 127 [hep-th/0205123] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    S. Fredenhagen and V. Schomerus, D-branes in coset models, JHEP 02 (2002) 005 [hep-th/0111189] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    S. Fredenhagen and V. Schomerus, On boundary RG-flows in coset conformal field theories, Phys. Rev. D 67 (2003) 085001 [hep-th/0205011] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  47. [47]
    S.J. Rey and J.T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    E. Witten, Nonabelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  49. [49]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory.Google Scholar
  50. [50]
    R. Dovgard and D. Gepner, On conformal field theories with low number of primary fields, J. Phys. A 42 (2009) 304009 [arXiv:0811.1904] [SPIRES].MathSciNetGoogle Scholar
  51. [51]
    D. Karabali and H.J. Schnitzer, BRST quantization of the gauged WZW action and coset conformal field theories, Nucl. Phys. B 329 (1990) 649 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    E. Witten, On Holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  53. [53]
    S. Hwang and H. Rhedin, The BRST formulation of G/H WZNW models, Nucl. Phys. B 406 (1993) 165 [hep-th/9305174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    K. Hori, Global aspects of gauged Wess-Zumino-Witten models, Commun. Math. Phys. 182 (1996) 1 [hep-th/9411134] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  55. [55]
    K. Gawędzki, Boundary WZW, G/H, G/G and CS theories, Annales Henri Poincaré 3 (2002) 847 [hep-th/0108044] [SPIRES].MATHCrossRefGoogle Scholar
  56. [56]
    C. Bachas, J. Hoppe and B. Pioline, Nahm equations, N = 1* domain walls and D-strings in AdS 5 × S 5, JHEP 07 (2001) 041 [hep-th/0007067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [SPIRES].MATHMathSciNetGoogle Scholar
  58. [58]
    V.G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 645.MATHCrossRefMathSciNetADSGoogle Scholar
  59. [59]
    C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and holography, JHEP 06 (2002) 027 [hep-th/0111210] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de l‘Ecole Normale SupérieureParis cedexFrance
  2. 2.New High Energy Theory CenterRutgers UniversityPiscatawayU.S.A.

Personalised recommendations