Skip to main content
Log in

Charged rotating AdS black hole and its thermodynamics in conformal gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We obtain the charged rotating black hole in conformal gravity. The metric is asymptotic to the (anti-)de Sitter spacetime. The contribution to the metric from the charges has a slower falloff than that in the Kerr-Newman AdS black hole. We analyse the global structure and obtain all the thermodynamical quantities including the mass, angular momentum, electric/magnetic charges and their thermodynamical conjugates. We verify that the first law of thermodynamics holds. We also obtain the new neutral rotating black holes that are beyond Einstein metrics. In contrast to the static ones, these rotating black holes have no parameters associated with the massive spin-2 hair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11 (1963) 237 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einsteins equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].

    MATH  Google Scholar 

  4. S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. G. Gibbons, H. Lü, D.N. Page and C. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Gibbons, H. Lü, D.N. Page and C. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93 (2004) 171102 [hep-th/0409155] [INSPIRE].

    Article  ADS  Google Scholar 

  7. W. Chen, H. Lü and C. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav. 23 (2006) 5323 [hep-th/0604125] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. E. Newman and A. Janis, Note on the Kerr spinning particle metric, J. Math. Phys. 6 (1965) 915 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].

    Article  ADS  Google Scholar 

  10. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S.-Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U(1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707 (2012) 286 [arXiv:1108.4159] [INSPIRE].

    ADS  Google Scholar 

  12. J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. R.J. Riegert, Birkhoffs theorem in conformal gravity, Phys. Rev. Lett. 53 (1984) 315 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Lü and C. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].

    Article  ADS  Google Scholar 

  16. W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].

  18. H. Lü and Z.-L. Wang, Exact Greens function and Fermi surfaces from conformal gravity, Phys. Lett. B 718 (2013) 1536 [arXiv:1210.4560] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Li, H.-S. Liu, H. Lü and Z.-L. Wang, Fermi surfaces and analytic Greens functions from conformal gravity, arXiv:1210.5000 [INSPIRE].

  20. H. Lü, C. Pope, E. Sezgin and L. Wulff, Critical and non-critical Einstein-Weyl supergravity, JHEP 10 (2011) 131 [arXiv:1107.2480] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K.S. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Le Du, Higher derivative supergravity in U(1) superspace, Eur. Phys. J. C 5 (1998) 181 [hep-th/9706058] [INSPIRE].

    ADS  Google Scholar 

  24. H. Lü and Z.-L. Wang, Supersymmetric asymptotic AdS and Lifshitz solutions in Einstein-Weyl and conformal supergravities, JHEP 08 (2012) 012 [arXiv:1205.2092] [INSPIRE].

    Google Scholar 

  25. H.-S. Liu and H. Lü, Supersymmetry of the Schrödinger and PP wave solutions in Einstein-Weyl supergravities, Eur. Phys. J. C 72 (2012) 2125 [arXiv:1206.4371] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. Lü and C.N. Pope, Gyrating Schrödinger geometries and non-relativistic field theories, Phys. Rev. D 86 (2012) 061501 [arXiv:1206.6510] [INSPIRE].

    ADS  Google Scholar 

  27. H.-S. Liu, H. Lü, Y. Pang and C. Pope, Supersymmetric solutions in four-dimensional off-shell curvature-squared supergravity, arXiv:1209.6065 [INSPIRE].

  28. Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D.D.K. Chow, Single-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 032001 [arXiv:1011.2202] [INSPIRE].

    Article  ADS  Google Scholar 

  30. D.D.K. Chow, Two-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 175004 [arXiv:1012.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S.-Q. Wu, General rotating charged Kaluza-Klein AdS black holes in higher dimensions, Phys. Rev. D 83 (2011) 121502 [arXiv:1108.4157] [INSPIRE].

    ADS  Google Scholar 

  32. P.D. Mannheim and D. Kazanas, Solutions to the Kerr and Kerr-Newman problems in fourth order conformal Weyl gravity, Phys. Rev. D 44 (1991) 417 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. H. Lü, Y. Pang, C.N. Pope and J.F. Vazquez-Poritz, AdS and Lifshitz black holes in conformal and Einstein-Weyl gravities, Phys. Rev. D 86 (2012) 044011 [arXiv:1204.1062] [INSPIRE].

    ADS  Google Scholar 

  34. A.R. Gover and P. Nurowski, Obstructions to conformally Einstein metrics in n dimensions, math/0405304 [INSPIRE].

  35. W. Chen and H. Lü, Kerr-Schild structure and harmonic 2-forms on (AydS-Kerr-NUT metrics, Phys. Lett. B 658 (2008) 158 [arXiv:0705.4471] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. G. Gibbons, M. Perry and C. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. A. Ashtekar and A. Magnon, Asymptotically Anti-de Sitter space-times, Class. Quant. Grav. 1 (1984) L39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. N. Okuyama and J.-i. Koga, Asymptotically Anti de Sitter spacetimes and conserved quantities in higher curvature gravitational theories, Phys. Rev. D 71 (2005) 084009 [hep-th/0501044] [INSPIRE].

    ADS  Google Scholar 

  43. Y. Pang, Brief note on AMD conserved quantities in quadratic curvature theories, Phys. Rev. D 83 (2011) 087501 [arXiv:1101.4267] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Shan Liu.

Additional information

ArXiv ePrint: 1212.6264

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, HS., Lü, H. Charged rotating AdS black hole and its thermodynamics in conformal gravity. J. High Energ. Phys. 2013, 139 (2013). https://doi.org/10.1007/JHEP02(2013)139

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)139

Keywords

Navigation