Skip to main content
Log in

The Young modulus of black strings and the fine structure of blackfolds

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength linear response coefficient capturing this effect is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we apply our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Emparan, Blackfolds, arXiv:1106.2021 [INSPIRE].

  9. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfold approach for higher-dimensional black holes, Acta Phys. Polon. B 40 (2009) 3459 [INSPIRE].

    MathSciNet  Google Scholar 

  10. J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP 05 (2010) 042 [arXiv:1003.3636] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Vasilic and M. Vojinovic, Classical spinning branes in curved backgrounds, JHEP 07 (2007) 028 [arXiv:0707.3395] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Papapetrou, Spinning test particles in general relativity. 1., Proc. Roy. Soc. Lond. A 209 (1951) 248.

    MathSciNet  ADS  Google Scholar 

  13. E. Corinaldesi and A. Papapetrou, Spinning test particles in general relativity. 2, Proc. Roy. Soc. Lond. A 209 (1951) 259.

    MathSciNet  ADS  Google Scholar 

  14. B. Carter and H. Quintana, Foundations of general relativistic high-pressure elasticity theory, Proc. Roy. Soc. Lond. A 331 (1972) 57.

    MathSciNet  ADS  Google Scholar 

  15. M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (Anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Landau and E.M. Lifshitz, Theory of elasticity, Course of theoretical physics. Vol. 7, Pergamon Press, Oxford U.K. (1959), pg. 134.

    Google Scholar 

  17. H. Elvang and P. Figueras, Black saturn, JHEP 05 (2007) 050 [hep-th/0701035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M.M. Caldarelli, O.J. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].

    ADS  Google Scholar 

  22. R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G. Gibbons, M. Perry and C. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP 02 (2012) 010 [arXiv:1110.3764] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, arXiv:1107.5780 [INSPIRE].

  28. S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. G. Gibbons, H. Lü, D.N. Page and C. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels A. Obers.

Additional information

ArXiv ePrint: 1110.4835

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armas, J., Camps, J., Harmark, T. et al. The Young modulus of black strings and the fine structure of blackfolds. J. High Energ. Phys. 2012, 110 (2012). https://doi.org/10.1007/JHEP02(2012)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)110

Keywords

Navigation