Skip to main content
Log in

Low-energy signals from kinetic mixing with a warped abelian hidden sector

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].

    ADS  Google Scholar 

  2. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [SPIRES].

  3. K.M. Zurek, TASI 2009 lectures: searching for unexpected physics at the LHC, arXiv:1001.2563 [SPIRES].

  4. N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e + e colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [SPIRES].

    Article  ADS  Google Scholar 

  5. S. Heinemeyer, Y. Kahn, M. Schmitt and M. Velasco, An experiment to search for light dark matter in low-energy ep scattering, arXiv:0705.4056 [SPIRES].

  6. M. Ahlers, H. Gies, J. Jaeckel, J. Redondo and A. Ringwald, Light from the hidden sector, Phys. Rev. D 76 (2007) 115005 [arXiv:0706.2836] [SPIRES].

    ADS  Google Scholar 

  7. J. Jaeckel and A. Ringwald, A cavity experiment to search for hidden sector photons, Phys. Lett. B 659 (2008) 509 [arXiv:0707.2063] [SPIRES].

    ADS  Google Scholar 

  8. M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [SPIRES].

    Article  ADS  Google Scholar 

  9. J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [SPIRES].

    Article  ADS  Google Scholar 

  10. L. Barze et al., Radiative events as a probe of dark forces at GeV-scale e + e colliders, arXiv:1007.4984 [SPIRES].

  11. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].

    ADS  Google Scholar 

  12. B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, arXiv:0911.4938 [SPIRES].

  13. R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].

    ADS  Google Scholar 

  14. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [SPIRES].

    Article  ADS  Google Scholar 

  15. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].

    ADS  Google Scholar 

  16. R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A’ decaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [SPIRES].

    Article  ADS  Google Scholar 

  17. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES].

    ADS  Google Scholar 

  18. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].

    ADS  Google Scholar 

  19. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  20. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].

    Article  ADS  Google Scholar 

  21. D. Hooper and K.M. Zurek, A natural supersymmetric model with MeV dark matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [SPIRES].

    ADS  Google Scholar 

  22. D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].

    Article  ADS  Google Scholar 

  24. D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [SPIRES].

    ADS  Google Scholar 

  25. T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [SPIRES].

    ADS  Google Scholar 

  26. D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The cosmology of composite inelastic dark matter, JHEP 06 (2010) 113 [arXiv:1003.4729] [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Foot, A CoGeNT confirmation of the DAMA signal, Phys. Lett. B 692 (2010) 65 [arXiv:1004.1424] [SPIRES].

    ADS  Google Scholar 

  28. T. Gherghetta and B. von Harling, A warped model of dark matter, JHEP 04 (2010) 039 [arXiv:1002.2967] [SPIRES].

    Article  ADS  Google Scholar 

  29. D. Bunk and J. Hubisz, Revealing Randall-Sundrum hidden valleys, Phys. Rev. D 81 (2010) 125009 [arXiv:1002.3160] [SPIRES].

    ADS  Google Scholar 

  30. K.L. McDonald and D.E. Morrissey, Low-energy probes of a warped extra dimension, JHEP 05 (2010) 056 [arXiv:1002.3361] [SPIRES].

    Article  ADS  Google Scholar 

  31. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].

    Article  Google Scholar 

  36. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  37. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  38. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum gauge hierarchy model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [SPIRES].

    Article  ADS  Google Scholar 

  39. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].

    ADS  Google Scholar 

  40. R. Foot and X.-G. He, Comment on ZZ′ mixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [SPIRES].

    ADS  Google Scholar 

  41. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].

    ADS  Google Scholar 

  42. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].

    Article  ADS  Google Scholar 

  43. B. Batell and T. Gherghetta, Holographic mixing quantified, Phys. Rev. D 76 (2007) 045017 [arXiv:0706.0890] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. B. Gripaios, Neutrinos in a sterile throat, Nucl. Phys. B 768 (2007) 157 [Erratum ibid. 830 (2010) 390] [hep-ph/0611218] [SPIRES].

    Article  ADS  Google Scholar 

  45. T. Flacke and D. Maybury, Aspects of axion phenomenology in a slice of AdS 5, JHEP 03 (2007) 007 [hep-ph/0612126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. K.L. McDonald, Light neutrinos from a mini-seesaw mechanism in warped space, Phys. Lett. B 696 (2011) 266 [arXiv:1010.2659] [SPIRES].

    ADS  Google Scholar 

  47. S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in large volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [SPIRES].

    Article  ADS  Google Scholar 

  49. M. Bullimore, J.P. Conlon and L.T. Witkowski, Kinetic mixing of U(1)s for local string models, JHEP 11 (2010) 142 [arXiv:1009.2380] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. C. Csáki, M. Reece and J. Terning, The AdS/QCD correspondence: still undelivered, JHEP 05 (2009) 067 [arXiv:0811.3001] [SPIRES].

    Article  ADS  Google Scholar 

  51. M.A. Stephanov, Deconstruction of unparticles, Phys. Rev. D 76 (2007) 035008 [arXiv:0705.3049] [SPIRES].

    ADS  Google Scholar 

  52. M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].

  53. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [SPIRES].

    ADS  Google Scholar 

  54. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  55. V.V. Ezhela, S.B. Lugovsky and O.V. Zenin, Hadronic part of the muon g − 2 estimated on the σ tot(2003)(e + e hadrons) evaluated data compilation, hep-ph/0312114 [SPIRES].

  56. M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Confronting spectral functions from e + e annihilation and τ decays: consequences for the muon magnetic moment, Eur. Phys. J. C 27 (2003) 497 [hep-ph/0208177] [SPIRES].

    ADS  Google Scholar 

  57. W.D. Goldberger and I.Z. Rothstein, High energy field theory in truncated AdS backgrounds, Phys. Rev. Lett. 89 (2002) 131601 [hep-th/0204160] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. W.D. Goldberger and I.Z. Rothstein, Effective field theory and unification in AdS backgrounds, Phys. Rev. D 68 (2003) 125011 [hep-th/0208060] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. W.D. Goldberger and I.Z. Rothstein, Systematics of coupling flows in AdS backgrounds, Phys. Rev. D 68 (2003) 125012 [hep-ph/0303158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. M. Reece and L.-T. Wang, Randall-Sundrum and strings, JHEP 07 (2010) 040 [arXiv:1003.5669] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. S. Gopalakrishna, S. Jung and J.D. Wells, Higgs boson decays to four fermions through an abelian hidden sector, Phys. Rev. D 78 (2008) 055002 [arXiv:0801.3456] [SPIRES].

    ADS  Google Scholar 

  62. P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [SPIRES].

    ADS  Google Scholar 

  63. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  64. K.-M. Cheung, Phenomenology of radion in Randall-Sundrum scenario, Phys. Rev. D 63 (2001) 056007 [hep-ph/0009232] [SPIRES].

    ADS  Google Scholar 

  65. O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  67. T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [SPIRES].

    ADS  Google Scholar 

  68. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  69. S.S.C. Law and K.L. McDonald, Broken symmetry as a stabilizing remnant, Phys. Rev. D 82 (2010) 104032 [arXiv:1008.4336] [SPIRES].

    ADS  Google Scholar 

  70. A. Pomarol, Grand unified theories without the desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [SPIRES].

    Article  ADS  Google Scholar 

  71. L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5, JHEP 11 (2001) 003 [hep-th/0108114] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. K.-w. Choi, H.D. Kim and I.-W. Kim, Gauge coupling renormalization in orbifold field theories, JHEP 11 (2002) 033 [hep-ph/0202257] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. K. Agashe, A. Delgado and R. Sundrum, Gauge coupling renormalization in RS1, Nucl. Phys. B 643 (2002) 172 [hep-ph/0206099] [SPIRES].

    Article  ADS  Google Scholar 

  74. K. Agashe and A. Delgado, A note on CFT dual of RS model with gauge fields in bulk, Phys. Rev. D 67 (2003) 046003 [hep-th/0209212] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  75. K. Agashe, A. Delgado and R. Sundrum, Grand unification in RS1, Ann. Phys. 304 (2003) 145 [hep-ph/0212028] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  76. S.L. Dubovsky, V.A. Rubakov and P.G. Tinyakov, Brane world: disappearing massive matter, Phys. Rev. D 62 (2000) 105011 [hep-th/0006046] [SPIRES].

    ADS  Google Scholar 

  77. S.L. Dubovsky and V.A. Rubakov, On models of gauge field localization on a brane, Int. J. Mod. Phys. A 16 (2001) 4331 [hep-th/0105243] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. A. Friedland, M. Giannotti and M. Graesser, On the RS2 realization of unparticles, Phys. Lett. B 678 (2009) 149 [arXiv:0902.3676] [SPIRES].

    ADS  Google Scholar 

  79. A. Friedland, M. Giannotti and M.L. Graesser, Vector bosons in the Randall-Sundrum 2 and Lykken-Randall models and unparticles, JHEP 09 (2009) 033 [arXiv:0905.2607] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. S.B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03 (2000) 023 [hep-th/0002091] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. G. Cacciapaglia, A. Deandrea and S. De Curtis, Nearby resonances beyond the Breit-Wigner approximation, Phys. Lett. B 682 (2009) 43 [arXiv:0906.3417] [SPIRES].

    ADS  Google Scholar 

  82. OPAL collaboration, G. Abbiendi et al., Precise determination of the Z resonance parameters at LEP: ’Zedometry’, Eur. Phys. J. C 19 (2001) 587 [hep-ex/0012018] [SPIRES].

    ADS  Google Scholar 

  83. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  84. ALEPH collaboration, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [SPIRES].

  85. J. Alcaraz, Precision electroweak measurements and constraints on the standard model, arXiv:0911.2604 [SPIRES].

  86. P. Janot, Closing the light sbottom mass window from a compilation of e + e hadron data, Phys. Lett. B 594 (2004) 23 [hep-ph/0403157] [SPIRES].

    ADS  Google Scholar 

  87. D. Karlen and H. Burkhardt, Investigation of vacuum polarization in t-channel radiative Bhabha scattering, Eur. Phys. J. C 22 (2001) 39 [hep-ex/0105065] [SPIRES].

    Article  ADS  Google Scholar 

  88. OPAL collaboration, G. Abbiendi et al., Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP, Eur. Phys. J. C 45 (2006) 1 [hep-ex/0505072] [SPIRES].

    ADS  Google Scholar 

  89. A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, arXiv:1006.0973 [SPIRES].

  90. W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev. D 74 (2006) 095005 [Erratum ibid. D 79 (2009) 039902] [hep-ph/0608068] [SPIRES].

    ADS  Google Scholar 

  91. D. Feldman, Z. Liu and P. Nath, The Stückelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [SPIRES].

    ADS  Google Scholar 

  92. OPAL collaboration, P.D. Acton et al., Search for anomalous production of high mass photon pairs in e + e collisions at LEP, Phys. Lett. B 311 (1993) 391 [SPIRES].

    ADS  Google Scholar 

  93. L3 collaboration, M. Acciarri et al., Tests of QED at LEP energies using e + e γgamma(γ) and e + e lepton + lepton γγ, Phys. Lett. B 353 (1995) 136 [SPIRES].

    ADS  Google Scholar 

  94. M. Ahlers, J. Jaeckel, J. Redondo and A. Ringwald, Probing hidden sector photons through the Higgs window, Phys. Rev. D 78 (2008) 075005 [arXiv:0807.4143] [SPIRES].

    ADS  Google Scholar 

  95. P. Fayet, U-boson production in e + e annihilations, ψ and Υ decays and light dark matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [SPIRES].

    ADS  Google Scholar 

  96. P. Fayet, Constraints on light dark matter and U bosons, from ψ, Υ, K + , π 0 , η and ηdecays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [SPIRES].

    ADS  Google Scholar 

  97. KLOE collaboration, F. Bossi, E. De Lucia, J. Lee-Franzini, S. Miscetti and M. Palutan, Precision kaon and hadron physics with KLOE, Riv. Nuovo Cim. 31 (2008) 531 [arXiv:0811.1929] [SPIRES].

    ADS  Google Scholar 

  98. G. Amelino-Camelia et al., Physics with the KLOE-2 experiment at the upgraded DAΦNE, Eur. Phys. J. C 68 (2010) 619 [arXiv:1003.3868] [SPIRES].

    Article  ADS  Google Scholar 

  99. BABAR collaboration, B. Aubert et al., The BaBar detector, Nucl. Instrum. Meth. A 479 (2002) 1 [hep-ex/0105044] [SPIRES].

    ADS  Google Scholar 

  100. BABAR collaboration, B. Aubert et al., A measurement of the total width, the electronic width and the mass of the Υ(10580) resonance, Phys. Rev. D 72 (2005) 032005 [hep-ex/0405025] [SPIRES].

    ADS  Google Scholar 

  101. BABAR collaboration, B. Aubert et al., Search for a narrow resonance in e + e to four lepton final states, arXiv:0908.2821 [SPIRES].

  102. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  103. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian L. McDonald.

Additional information

ArXiv ePrint: 1010.5999

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, K.L., Morrissey, D.E. Low-energy signals from kinetic mixing with a warped abelian hidden sector. J. High Energ. Phys. 2011, 87 (2011). https://doi.org/10.1007/JHEP02(2011)087

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)087

Keywords

Navigation