Skip to main content
Log in

Three roads to probe-brane superconductivity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study a defect system of two parallel D5 probe branes in a large-N c D3 background. Using the non-abelian DBI action, we study three different fields that can give rise to a superconducting phase transition: A vector (p-wave), a scalar corresponding to a non-trivial “separation” of the branes in the (3 + 1) field theory directions and a scalar corresponding to a separation in the “internal” S 5 (both s-wave).

Comparing these phases first in the α2 expansion, we find that the internal scalar has the largest critical temperature and is always thermodynamically preferred. Further, there is an interesting attractor behavior.

Taking a simplified version of the full DBI action that preserves its regularity and geometry, we find that the divergences of the α2 expansion are resolved and some second order transitions turn into first order ones. In addition to some other changes of the phase diagram due to the structure of the DBI action, we observe that the ground state degeneracy of the unbroken theory is lifted. We also isolate the unphysical artifacts of our simplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].

    ADS  Google Scholar 

  5. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. M.C. Wapler, Holographic Experiments on Defects, Int. J. Mod. Phys. A 25 (2010) 4397 [arXiv:0909.1698] [SPIRES].

    ADS  Google Scholar 

  8. R.C. Myers and M.C. Wapler, Transport Properties of Holographic Defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].

  10. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].

    Article  ADS  Google Scholar 

  11. S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  12. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall Effect in a Holographic Model, JHEP 10 (2010) 063 [arXiv:1003.4965] [SPIRES].

    Article  ADS  Google Scholar 

  13. D.K. Hong and H.-U. Yee, Holographic aspects of three dimensional QCD from string theory, JHEP 05 (2010) 036 [arXiv:1003. 1306] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Keski-Vakkuri and P. Kraus, Quantum Hall Effect in AdS/CFT, JHEP 09 (2008) 130 [arXiv:0805.4643] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [SPIRES].

    Article  ADS  Google Scholar 

  16. R.C. Myers and R.M. Thomson, Holographic mesons in various dimensions, JHEP 09 (2006) 066 [hep-th/0605017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  20. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Albash and C.V. Johnson, Phases of Holographic Superconductors in an External Magnetic Field, arXiv:0906.0519 [SPIRES].

  23. E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [SPIRES].

    ADS  Google Scholar 

  24. A. O’Bannon, Toward a Holographic Model of Superconducting Fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [SPIRES].

    Article  Google Scholar 

  25. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Ammon, J. Erdmenger, M. Kaminski and A. O’Bannon, Fermionic Operator Mixing in Holographic p-wave Superfluids, JHEP 05 (2010) 053 [arXiv:1003.1134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [SPIRES].

    ADS  Google Scholar 

  28. R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  35. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].

    Article  ADS  Google Scholar 

  37. J. Erdmenger, M. Kaminski, P. Kerner and F. Rust, Finite baryon and isospin chemical potential in AdS/CFT with flavor, JHEP 11 (2008) 031 [arXiv:0807.2663] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Karch and A. Katz, Adding flavor to AdS/CFT, Fortsch. Phys. 51 (2003) 759 [SPIRES].

  39. O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. J. Erdmenger, Z. Guralnik and I. Kirsch, Four-Dimensional Superconformal Theories with Interacting Boundaries or Defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. M.C. Wapler, Thermodynamics of Holographic Defects, JHEP 01 (2010) 056 [arXiv:0911.2943] [SPIRES].

    Article  ADS  Google Scholar 

  42. M.C. Wapler, Massive Quantum Liquids from Holographic Angel’s Trumpets, JHEP 05 (2010) 019 [arXiv:1002.0336] [SPIRES].

    Article  ADS  Google Scholar 

  43. R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].

    Article  ADS  Google Scholar 

  44. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Erdmenger and I. Kirsch, Mesons in gauge/gravity dual with large number of fundamental fields, JHEP 12 (2004) 025 [hep-th/0408113] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].

    Article  ADS  Google Scholar 

  54. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].

    Article  ADS  Google Scholar 

  55. Y. Kitazawa, Effective Lagrangian for the open superstring from a 5-point function, Nucl. Phys. B 289 (1987) 599 [SPIRES].

    Article  ADS  Google Scholar 

  56. P. Koerber and A. Sevrin, The non-Abelian Born-Infeld action through order α′**3, JHEP 10 (2001) 003 [hep-th/0108169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. M. Wijnholt, On curvature-squared corrections for D-brane actions, hep-th/0301029 [SPIRES].

  59. A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [SPIRES].

  60. L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [SPIRES].

    Article  ADS  Google Scholar 

  61. P. Benincasa, Universality of Holographic Phase Transitions and Holographic Quantum Liquids, arXiv:0911.0075 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias C. Wapler.

Additional information

ArXiv ePrint: 1011.5218

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BH., Wapler, M.C. Three roads to probe-brane superconductivity. J. High Energ. Phys. 2011, 85 (2011). https://doi.org/10.1007/JHEP02(2011)085

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)085

Keywords

Navigation