MeV-scale seesaw and leptogenesis


We study the type-I seesaw model with three right-handed neutrinos and Majorana masses below the pion mass. In this mass range, the model parameter space is not only strongly constrained by the requirement to explain the light neutrino masses, but also by experimental searches and cosmological considerations. In the existing literature, three disjoint regions of potentially viable parameter space have been identified. In one of them, all heavy neutrinos decay shortly before big bang nucleosynthesis. In the other two regions, one of the heavy neutrinos either decays between BBN and the CMB decoupling or is quasi-stable. We show that previously unaccounted constraints from photodisintegration of nuclei practically rule out all relevant decays that happen between BBN and the CMB decoupling. Quite remarkably, if all heavy neutrinos decay before BBN, the baryon asymmetry of the universe can be quite generically explained by low-scale leptogenesis, i.e. without further tuning in addition to what is needed to avoid experimental and cosmological constraints. This motivates searches for heavy neutrinos in pion decay experiments.

A preprint version of the article is available at ArXiv.


  1. [1]

    P. Minkowski, μ eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  2. [2]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  3. [3]

    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  4. [4]

    T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    M. Chrzaszcz, M. Drewes, T.E. Gonzalo, J. Harz, S. Krishnamurthy and C. Weniger, A frequentist analysis of three right-handed neutrinos with GAMBIT, Eur. Phys. J. C 80 (2020) 569 [arXiv:1908.02302] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    P. Hernández, M. Kekic and J. Lopez-Pavon, Neff in low-scale seesaw models versus the lightest neutrino mass, Phys. Rev. D 90 (2014) 065033 [arXiv:1406.2961] [INSPIRE].

  9. [9]

    A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, Low-scale leptogenesis with three heavy neutrinos, JHEP 01 (2019) 164 [arXiv:1810.12463] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. Drewes, The phenomenology of right handed neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    L. Canetti, M. Drewes and M. Shaposhnikov, Matter and antimatter in the universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].

  12. [12]

    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    D. Bödeker and W. Buchmüller, Baryogenesis from the weak scale to the GUT scale, arXiv:2009.07294 [INSPIRE].

  14. [14]

    E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  15. [15]

    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

  16. [16]

    T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117 (2016) 091801 [arXiv:1606.00017] [INSPIRE].

  17. [17]

    J. Klarić, M. Shaposhnikov and I. Timiryasov, Uniting low-scale leptogeneses, arXiv:2008.13771 [INSPIRE].

  18. [18]

    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].

  19. [19]

    A.C. Vincent, E.F. Martinez, P. Hernández, M. Lattanzi and O. Mena, Revisiting cosmological bounds on sterile neutrinos, JCAP 04 (2015) 006 [arXiv:1408.1956] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    R. Diamanti, L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A.C. Vincent, Constraining dark matter late-time energy injection: decays and P-wave annihilations, JCAP 02 (2014) 017 [arXiv:1308.2578] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    V. Poulin, J. Lesgourgues and P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy, JCAP 03 (2017) 043 [arXiv:1610.10051] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    M. Drewes, On the minimal mixing of heavy neutrinos, arXiv:1904.11959 [INSPIRE].

  23. [23]

    P. Hernández, M. Kekic and J. Lopez-Pavon, Low-scale seesaw models versus Neff , Phys. Rev. D 89 (2014) 073009 [arXiv:1311.2614] [INSPIRE].

  24. [24]

    M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Testing the low scale seesaw and leptogenesis, JHEP 08 (2017) 018 [arXiv:1609.09069] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. de Gouvêa, See-saw energy scale and the LSND anomaly, Phys. Rev. D 72 (2005) 033005 [hep-ph/0501039] [INSPIRE].

  26. [26]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  27. [27]

    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  28. [28]

    X.-D. Shi and G.M. Fuller, A new dark matter candidate: nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

  29. [29]

    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

  30. [30]

    A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable baryogenesis in seesaw models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Antusch et al., Probing leptogenesis at future colliders, JHEP 09 (2018) 124 [arXiv:1710.03744] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    S. Eijima, M. Shaposhnikov and I. Timiryasov, Parameter space of baryogenesis in the νMSM, JHEP 07 (2019) 077 [arXiv:1808.10833] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    J. Ghiglieri and M. Laine, Sterile neutrino dark matter via coinciding resonances, JCAP 07 (2020) 012 [arXiv:2004.10766] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    M. Shaposhnikov, The νMSM, leptonic asymmetries, and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    T. Asaka, S. Eijima and H. Ishida, Mixing of active and sterile neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    A. Caputo, P. Hernández, J. Lopez-Pavon and J. Salvado, The seesaw portal in testable models of neutrino masses, JHEP 06 (2017) 112 [arXiv:1704.08721] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, JHEP 07 (2018) 105 [arXiv:1801.04207] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  41. [41]

    PIENU collaboration, Search for heavy neutrinos in π μν decay, Phys. Lett. B 798 (2019) 134980 [arXiv:1904.03269] [INSPIRE].

  42. [42]

    PIENU collaboration, Improved search for heavy neutrinos in the decay π , Phys. Rev. D 97 (2018) 072012 [arXiv:1712.03275] [INSPIRE].

  43. [43]

    R.S. Hayano et al., Heavy neutrino search using Kμ2 decay, Phys. Rev. Lett. 49 (1982) 1305 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    C.Y. Pang, R.H. Hildebrand, G.D. Cable and R. Stiening, Search for rare K + decays. I. K+ \( {\mu}^{+}\nu \overline{\nu}\nu \), Phys. Rev. D 8 (1973) 1989 [INSPIRE].

  45. [45]

    R. Abela et al., Search for an admixture of heavy neutrino in pion decay, Phys. Lett. B 105 (1981) 263 [Erratum ibid. 106 (1981) 513] [INSPIRE].

  46. [46]

    D.I. Britton et al., Improved search for massive neutrinos in π+ e+ν decay, Phys. Rev. D 46 (1992) 885 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    J. Orloff, A.N. Rozanov and C. Santoni, Limits on the mixing of tau neutrino to heavy neutrinos, Phys. Lett. B 550 (2002) 8 [hep-ph/0208075] [INSPIRE].

  48. [48]

    A. Abada, V. De Romeri, M. Lucente, A.M. Teixeira and T. Toma, Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, JHEP 02 (2018) 169 [arXiv:1712.03984] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    D.A. Bryman and R. Shrock, Improved constraints on sterile neutrinos in the MeV to GeV mass range, Phys. Rev. D 100 (2019) 053006 [arXiv:1904.06787] [INSPIRE].

  50. [50]

    D.A. Bryman and R. Shrock, Constraints on sterile neutrinos in the MeV to GeV mass range, Phys. Rev. D 100 (2019) 073011 [arXiv:1909.11198] [INSPIRE].

  51. [51]

    M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

  52. [52]

    J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

  53. [53]

    M. Drewes, J. Klarić and P. Klose, On lepton number violation in heavy neutrino decays at colliders, JHEP 11 (2019) 032 [arXiv:1907.13034] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    M. Drewes and S. Eijima, Neutrinoless double β decay and low scale leptogenesis, Phys. Lett. B 763 (2016) 72 [arXiv:1606.06221] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  55. [55]

    L. Mastrototaro, A. Mirizzi, P.D. Serpico and A. Esmaili, Heavy sterile neutrino emission in core-collapse supernovae: constraints and signatures, JCAP 01 (2020) 010 [arXiv:1910.10249] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    A.D. Dolgov, S.H. Hansen, G. Raffelt and D.V. Semikoz, Cosmological and astrophysical bounds on a heavy sterile neutrino and the KARMEN anomaly, Nucl. Phys. B 580 (2000) 331 [hep-ph/0002223] [INSPIRE].

  58. [58]

    A.D. Dolgov, S.H. Hansen, G. Raffelt and D.V. Semikoz, Heavy sterile neutrinos: bounds from big bang nucleosynthesis and SN1987A, Nucl. Phys. B 590 (2000) 562 [hep-ph/0008138] [INSPIRE].

  59. [59]

    O. Ruchayskiy and A. Ivashko, Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, JCAP 10 (2012) 014 [arXiv:1202.2841] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    N. Sabti, A. Magalich and A. Filimonova, An extended analysis of heavy neutral leptons during big bang nucleosynthesis, JCAP 11 (2020) 056 [arXiv:2006.07387] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    A. Boyarsky, M. Ovchynnikov, O. Ruchayskiy and V. Syvolap, Improved BBN constraints on heavy neutral leptons, arXiv:2008.00749 [INSPIRE].

  62. [62]

    T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the cosmic microwave background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].

  63. [63]

    S.K. Acharya and R. Khatri, CMB anisotropy and BBN constraints on pre-recombination decay of dark matter to visible particles, JCAP 12 (2019) 046 [arXiv:1910.06272] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    M. Lattanzi, S. Riemer-Sorensen, M. Tortola and J.W.F. Valle, Updated CMB and x- and γ-ray constraints on Majoron dark matter, Phys. Rev. D 88 (2013) 063528 [arXiv:1303.4685] [INSPIRE].

  65. [65]

    M. Drewes et al., A white paper on keV sterile neutrino dark matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

    Google Scholar 

  66. [66]

    A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile neutrino dark matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    G.B. Gelmini, M. Kawasaki, A. Kusenko, K. Murai and V. Takhistov, Big bang nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the universe, JCAP 09 (2020) 051 [arXiv:2005.06721] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

  69. [69]

    M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, JCAP 11 (2018) 032 [arXiv:1808.09324] [INSPIRE].

  70. [70]

    P.F. Depta, M. Hufnagel and K. Schmidt-Hoberg, Updated BBN constraints on electromagnetic decays of MeV-scale particles, arXiv:2011.06519 [INSPIRE].

  71. [71]

    P.F. Depta, M. Hufnagel and K. Schmidt-Hoberg, ACROPOLIS: A generiC fRamework fOr Photodisintegration Of LIght elementS, arXiv:2011.06518 [INSPIRE].

  72. [72]

    M. Kawasaki and T. Moroi, Electromagnetic cascade in the early universe and its application to the big bang nucleosynthesis, Astrophys. J. 452 (1995) 506 [astro-ph/9412055] [INSPIRE].

  73. [73]

    J. Geiss and G. Gloeckler, Isotopic composition of H, HE and NE in the protosolar cloud, Space Sci. Rev. 106 (2003) 3.

    ADS  Article  Google Scholar 

  74. [74]

    G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept. 198 (1990) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    J.H. Chang, R. Essig and S.D. McDermott, Revisiting supernova 1987A constraints on dark photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].

    ADS  MATH  Google Scholar 

  76. [76]

    G.G. Raffelt and S. Zhou, Supernova bound on keV-mass sterile neutrinos reexamined, Phys. Rev. D 83 (2011) 093014 [arXiv:1102.5124] [INSPIRE].

  77. [77]

    C.A. Argüelles, V. Brdar and J. Kopp, Production of keV sterile neutrinos in supernovae: new constraints and gamma ray observables, Phys. Rev. D 99 (2019) 043012 [arXiv:1605.00654] [INSPIRE].

  78. [78]

    V. Syvolap, O. Ruchayskiy and A. Boyarsky, Resonance production of keV sterile neutrinos in core-collapse supernovae and lepton number diffusion, arXiv:1909.06320 [INSPIRE].

  79. [79]

    A.M. Suliga, I. Tamborra and M.-R. Wu, Lifting the core-collapse supernova bounds on keV-mass sterile neutrinos, JCAP 08 (2020) 018 [arXiv:2004.11389] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    N. Bar, K. Blum and G. D’Amico, Is there a supernova bound on axions?, Phys. Rev. D 101 (2020) 123025 [arXiv:1907.05020] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    K. Blum and D. Kushnir, Neutrino signal of collapse-induced thermonuclear supernovae: the case for prompt black hole formation in SN1987A, Astrophys. J. 828 (2016) 31 [arXiv:1601.03422] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, The masses of active neutrinos in the νMSM from X-ray astronomy, JETP Lett. 83 (2006) 133 [hep-ph/0601098] [INSPIRE].

  83. [83]

    J. Lopez-Pavon, E. Molinaro and S.T. Petcov, Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay, JHEP 11 (2015) 030 [arXiv:1506.05296] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

  85. [85]

    M. Drewes and B. Garbrecht, Combining experimental and cosmological constraints on heavy neutrinos, Nucl. Phys. B 921 (2017) 250 [arXiv:1502.00477] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  86. [86]

    J. Ghiglieri and M. Laine, Sterile neutrino dark matter via GeV-scale leptogenesis?, JHEP 07 (2019) 078 [arXiv:1905.08814] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  87. [87]

    D. Bödeker and D. Schröder, Kinetic equations for sterile neutrinos from thermal fluctuations, JCAP 02 (2020) 033 [arXiv:1911.05092] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    J. Ghiglieri and M. Laine, GeV-scale hot sterile neutrino oscillations: a numerical solution, JHEP 02 (2018) 078 [arXiv:1711.08469] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron rate in the minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    M. Drewes et al., ARS leptogenesis, Int. J. Mod. Phys. A 33 (2018) 1842002 [arXiv:1711.02862] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  92. [92]

    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].

  93. [93]

    D. Cerci et al., A long-lived particle and dark matter search at the LHC at z = 80127 m, expression of interest Snowmass EF08+09+10, (2020).

  94. [94]

    R.M. Abraham et al., Forward physics facility, letter of interest for SNOWMASS-2021, (2020).

  95. [95]

    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): conceptual design report, volume 2: the physics program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].

  96. [96]

    T2K collaboration, The T2K experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].

  97. [97]

    P. Coloma, E. Fernández-Martínez, M. González-López, J. Hernández-García and Z. Pavlovic, GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, arXiv:2007.03701 [INSPIRE].

  98. [98]

    P. Ballett, T. Boschi and S. Pascoli, Heavy neutral leptons from low-scale seesaws at the DUNE near detector, JHEP 03 (2020) 111 [arXiv:1905.00284] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    C.A. Argüelles et al., New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter, Rept. Prog. Phys. 83 (2020) 124201 [arXiv:1907.08311] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    MicroBooNE, LAr1-ND and ICARUS-WA104 collaborations, A proposal for a three detector short-baseline neutrino oscillation program in the Fermilab booster neutrino beam, arXiv:1503.01520 [INSPIRE].

  101. [101]

    P. Adamson et al., The NuMI neutrino beam, Nucl. Instrum. Meth. A 806 (2016) 279 [arXiv:1507.06690] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Valerie Domcke.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.11678

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domcke, V., Drewes, M., Hufnagel, M. et al. MeV-scale seesaw and leptogenesis. J. High Energ. Phys. 2021, 200 (2021).

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Neutrino Physics