T 3-invariant heterotic Hull-Strominger solutions


We consider the heterotic string on Calabi-Yau manifolds admitting a Strominger-Yau-Zaslow fibration. Upon reducing the system in the T3-directions, the Hermitian Yang-Mills conditions can then be reinterpreted as a complex flat connection on ℝ3 satisfying a certain co-closure condition. We give a number of abelian and non-abelian examples, and also compute the back-reaction on the geometry through the non-trivial α′-corrected heterotic Bianchi identity, which includes an important correction to the equations for the complex flat connection. These are all new local solutions to the Hull-Strominger system on T3 ×3. We also propose a method for computing the spectrum of certain non-abelian models, in close analogy with the Morse-Witten complex of the abelian models.

A preprint version of the article is available at ArXiv.


  1. [1]

    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    B.S. Acharya and E. Witten, Chiral fermions from manifolds of G2 holonomy, hep-th/0109152 [INSPIRE].

  5. [5]

    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    S. Donaldson, Adiabatic limits of co-associative Kovalev-Lefschetz fibrations, in Algebra, geometry, and physics in the 21st century, D. Auroux et al. eds., Springer, Germany (2017).

  8. [8]

    B.S. Acharya, A moduli fixing mechanism in M-theory, hep-th/0212294 [INSPIRE].

  9. [9]

    T. Pantev and M. Wijnholt, Hitchin’s equations and M-theory phenomenology, J. Geom. Phys. 61 (2011) 1223 [arXiv:0905.1968] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    A.P. Braun, S. Cizel, M. Hübner and S. Schäfer-Nameki, Higgs bundles for M-theory on G2-manifolds, JHEP 03 (2019) 199 [arXiv:1812.06072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125.

    MathSciNet  MATH  Google Scholar 

  12. [12]

    A. Corti, M. Haskins, J. Nordström and T. Pacini, G2-manifolds and associative submanifolds via semi-Fano 3-folds, Duke Math. J. 164 (2015) 1971 [arXiv:1207.4470] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  13. [13]

    A. Corti, M. Haskins, J. Nordström and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, Geom. Topol. 17 (2013) 1955.

  14. [14]

    M. Hubner, Local G2-manifolds, Higgs bundles and a colored quantum mechanics, arXiv:2009.07136 [INSPIRE].

  15. [15]

    R. Barbosa, M. Cvetič, J.J. Heckman, C. Lawrie, E. Torres and G. Zoccarato, T-branes and G2 backgrounds, Phys. Rev. D 101 (2020) 026015 [arXiv:1906.02212] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    N.J. Hitchin, Stable forms and special metrics, math/0107101 [INSPIRE].

  18. [18]

    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    C.M. Hull, Anomalies, ambiguities and superstrings, Phys. Lett. B 167 (1986) 51 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    A. Sen, (2, 0) supersymmetry and space-time supersymmetry in the heterotic string theory, Nucl. Phys. B 278 (1986) 289 [INSPIRE].

  22. [22]

    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    D. Martelli and J. Sparks, Non-Kähler heterotic rotations, Adv. Theor. Math. Phys. 15 (2011) 131 [arXiv:1010.4031] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  24. [24]

    X. de la Ossa and E.E. Svanes, Connections, field redefinitions and heterotic supergravity, JHEP 12 (2014) 008 [arXiv:1409.3347] [INSPIRE].

  25. [25]

    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1.

  27. [27]

    K. Uhlenbeck and S.T. Yau, On the existence of Hermitian-Yang-mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.

  28. [28]

    G. t Hooft, Magnetic monopoles in unified theories, Nucl. Phys. B 79 (1974) 276 [CERN-TH-1876].

  29. [29]

    A. M. Polyakov, Particle spectrum in quantum field theory, in 30 years of the landau institute — Selected papers, I.M. Khalatnikov ed., World Scientific, Singapore (1996).

  30. [30]

    B.S. Acharya, M theory, Joyce orbifolds and superYang-Mills, Adv. Theor. Math. Phys. 3 (1999) 227 [hep-th/9812205] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  31. [31]

    K. Corlette et al., Flat g-bundles with canonical metrics, J. Diff. Geom. 28 (1988) 361.

    MathSciNet  Article  Google Scholar 

  32. [32]

    M. Gagliardo and K. Uhlenbeck, Geometric aspects of the Kapustin-Witten equations, J. Fix. Point Theor. Appl. 11 (2012) 185.

    MathSciNet  Article  Google Scholar 

  33. [33]

    R. Barbosa, Harmonic Higgs bundles and coassociative ALE fibrations, arXiv:1910.10742 [INSPIRE].

  34. [34]

    L. Carlevaro, D. Israel and P.M. Petropoulos, Double-scaling limit of heterotic bundles and dynamical deformation in CFT, Nucl. Phys. B 827 (2010) 503 [arXiv:0812.3391] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    L. Carlevaro and D. Israel, Heterotic resolved conifolds with torsion, from supergravity to CFT, JHEP 01 (2010) 083 [arXiv:0910.3190] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    N. Halmagyi, D. Israel and E.E. Svanes, The Abelian heterotic conifold, JHEP 07 (2016) 029 [arXiv:1601.07561] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    N. Halmagyi, D. Israel, M. Sarkis and E.E. Svanes, Heterotic Hyper-Kähler flux backgrounds, JHEP 08 (2017) 138 [arXiv:1706.01725] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the complex structure in heterotic Calabi-Yau vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    L.B. Anderson, J. Gray and E. Sharpe, Algebroids, heterotic moduli spaces and the Strominger system, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    X. de la Ossa and E.E. Svanes, Holomorphic bundles and the moduli space of N = 1 supersymmetric heterotic compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].

  41. [41]

    M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, Math. Ann. 369 (2017) 2 [arXiv:1503.07562] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  42. [42]

    X. de la Ossa, E. Hardy and E.E. Svanes, The heterotic superpotential and moduli, JHEP 01 (2016) 049 [arXiv:1509.08724] [INSPIRE].

  43. [43]

    P. Candelas, X. de la Ossa and J. McOrist, A metric for heterotic moduli, Commun. Math. Phys. 356 (2017) 567 [arXiv:1605.05256] [INSPIRE].

  44. [44]

    J. McOrist, On the effective field theory of heterotic vacua, Lett. Math. Phys. 108 (2018) 1031 [arXiv:1606.05221] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  45. [45]

    A. Ashmore, X. De La Ossa, R. Minasian, C. Strickland-Constable and E.E. Svanes, Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L algebra, JHEP 10 (2018) 179 [arXiv:1806.08367] [INSPIRE].

  46. [46]

    M. Garcia-Fernandez, R. Rubio, C. Shahbazi and C. Tipler, Canonical metrics on holomorphic Courant algebroids, arXiv:1803.01873 [INSPIRE].

  47. [47]

    M. Garcia-Fernandez, R. Rubio and C. Tipler, Holomorphic string algebroids, Trans. Am. Math. Soc. 373 (2020) 7347 [arXiv:1807.10329] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  48. [48]

    J. McOrist and R. Sisca, Small gauge transformations and universal geometry in heterotic theories, SIGMA 16 (2020) 126 [arXiv:1904.07578] [INSPIRE].

    MathSciNet  Google Scholar 

  49. [49]

    A. Ashmore, C. Strickland-Constable, D. Tennyson and D. Waldram, Heterotic backgrounds via generalised geometry: moment maps and moduli, JHEP 11 (2020) 071 [arXiv:1912.09981] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    M. Garcia-Fernandez, R. Rubio and C. Tipler, Gauge theory for string algebroids, arXiv:2004.11399 [INSPIRE].

  51. [51]

    M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eirik Eik Svanes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.07438

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acharya, B.S., Kinsella, A. & Svanes, E.E. T 3-invariant heterotic Hull-Strominger solutions. J. High Energ. Phys. 2021, 197 (2021). https://doi.org/10.1007/JHEP01(2021)197

Download citation


  • Superstring Vacua
  • Superstrings and Heterotic Strings
  • Flux compactifications
  • Solitons Monopoles and Instantons