O(n, n) invariance and Wald entropy formula in the Heterotic Superstring effective action at first order in α′

Abstract

We perform the toroidal compactification of the full Bergshoeff-de Roo version of the Heterotic Superstring effective action to first order in α′. The dimensionally-reduced action is given in a manifestly-O(n, n)-invariant form which we use to derive a manifestly-O(n, n)-invariant Wald entropy formula which we then use to compute the entropy of α′-corrected, 4-dimensional, 4-charge, static, extremal, supersymmetric black holes.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Z. Elgood and T. Ortín, T duality and Wald entropy formula in the Heterotic Superstring effective action at first-order in α′, JHEP 10 (2020) 097 [arXiv:2005.11272] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    E. Bergshoeff, B. Janssen and T. Ortín, Solution generating transformations and the string effective action, Class. Quant. Grav. 13 (1996) 321 [hep-th/9506156] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    M. Serone and M. Trapletti, A Note on T-duality in heterotic string theory, Phys. Lett. B 637 (2006) 331 [hep-th/0512272] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    O.A. Bedoya, D. Marqués and C. Núñez, Heterotic α′-corrections in Double Field Theory, JHEP 12 (2014) 074 [arXiv:1407.0365] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427(R) [gr-qc/9307038] [INSPIRE].

  9. [9]

    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

  10. [10]

    P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    P.A. Cano, S. Chimento, R. Linares, T. Ortín and P.F. Ramírez, α′ corrections of Reissner-Nordström black holes, JHEP 02 (2020) 031 [arXiv:1910.14324] [INSPIRE].

  12. [12]

    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    J.M. Maldacena and A. Strominger, Statistical entropy of four-dimensional extremal black holes, Phys. Rev. Lett. 77 (1996) 428 [hep-th/9603060] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    C.V. Johnson, R.R. Khuri and R.C. Myers, Entropy of 4D extremal black holes, Phys. Lett. B 378 (1996) 78 [hep-th/9603061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    R.R. Metsaev and A.A. Tseytlin, Order α′ (Two Loop) Equivalence of the String Equations of Motion and the σ-Model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293 (1987) 385 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    K.A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev. D 56 (1997) 7940 [hep-th/9705193] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α′-deformed Courant brackets, JHEP 01 (2015) 012 [arXiv:1407.0708] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    D. Marqués and C.A. Núñez, T-duality and α′-corrections, JHEP 10 (2015) 084 [arXiv:1507.00652] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    W.H. Baron, J.J. Fernández-Melgarejo, D. Marqués and C. Núñez, The Odd story of α′-corrections, JHEP 04 (2017) 078 [arXiv:1702.05489] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    C. Eloy, O. Hohm and H. Samtleben, Green-Schwarz Mechanism for String Dualities, Phys. Rev. Lett. 124 (2020) 091601 [arXiv:1912.01700] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    C. Eloy, O. Hohm and H. Samtleben, Duality Invariance and Higher Derivatives, Phys. Rev. D 101 (2020) 126018 [arXiv:2004.13140] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    E.A. Bergshoeff and M. de Roo, The Quartic Effective Action of the Heterotic String and Supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].

  24. [24]

    E. Bergshoeff and M. de Roo, Supersymmetric Chern-Simons Terms in Ten-dimensions, Phys. Lett. B 218 (1989) 210 [INSPIRE].

  25. [25]

    T. Ortín, Gravity and Strings, 2nd edition, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2015) [INSPIRE].

  26. [26]

    A. Fontanella and T. Ortín, On the supersymmetric solutions of the Heterotic Superstring effective action, JHEP 06 (2020) 106 [arXiv:1910.08496] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    G.F. Chapline and N.S. Manton, Unification of Yang-Mills Theory and Supergravity in Ten-Dimensions, Phys. Lett. B 120 (1983) 105 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    A.H. Chamseddine, N = 4 Supergravity Coupled to N = 4 Matter, Nucl. Phys. B 185 (1981) 403 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  30. [30]

    H. Nicolai and P.K. Townsend, N = 3 Supersymmetry Multiplets with Vanishing Trace Anomaly: Building Blocks of the N > 3 Supergravities, Phys. Lett. B 98 (1981) 257 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-Dimensional Maxwell-Einstein Supergravity, Its Currents, and the Issue of Its Auxiliary Fields, Nucl. Phys. B 195 (1982) 97 [INSPIRE].

  32. [32]

    D.M. Kaplan, D.A. Lowe, J.M. Maldacena and A. Strominger, Microscopic entropy of N = 2 extremal black holes, Phys. Rev. D 55 (1997) 4898 [hep-th/9609204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    M. Cvetič and D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus, Phys. Rev. D 53 (1996) 584 [hep-th/9507090] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    M. Cvetič and A.A. Tseytlin, General class of BPS saturated dyonic black holes as exact superstring solutions, Phys. Lett. B 366 (1996) 95 [hep-th/9510097] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996) 5619 [Erratum ibid. 55 (1997) 3907] [hep-th/9512031] [INSPIRE].

  36. [36]

    J. Rahmfeld, Extremal black holes as bound states, Phys. Lett. B 372 (1996) 198 [hep-th/9512089] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    S. Chimento, P. Meessen, T. Ortín, P.F. Ramírez and A. Ruipérez, On a family of α′-corrected solutions of the Heterotic Superstring effective action, JHEP 07 (2018) 080 [arXiv:1803.04463] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. [39]

    P.A. Cano, S. Chimento, P. Meessen, T. Ortín, P.F. Ramírez and A. Ruipérez, Beyond the near-horizon limit: Stringy corrections to Heterotic Black Holes, JHEP 02 (2019) 192 [arXiv:1808.03651] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    K. Behrndt, G. Lopes Cardoso, B. de Wit, D. Lüst, T. Mohaupt and W.A. Sabra, Higher order black hole solutions in N = 2 supergravity and Calabi-Yau string backgrounds, Phys. Lett. B 429 (1998) 289 [hep-th/9801081] [INSPIRE].

  41. [41]

    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy, Phys. Lett. B 451 (1999) 309 [hep-th/9812082] [INSPIRE].

  42. [42]

    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Deviations from the area law for supersymmetric black holes, Fortsch. Phys. 48 (2000) 49 [hep-th/9904005] [INSPIRE].

  43. [43]

    G. Lopes Cardoso, B. de Wit and T. Mohaupt, Macroscopic entropy formulae and nonholomorphic corrections for supersymmetric black holes, Nucl. Phys. B 567 (2000) 87 [hep-th/9906094] [INSPIRE].

  44. [44]

    B. Sahoo and A. Sen, α′ corrections to extremal dyonic black holes in heterotic string theory, JHEP 01 (2007) 010 [hep-th/0608182] [INSPIRE].

  45. [45]

    P. Dominis Prester and T. Terzic, α′-exact entropies for BPS and non-BPS extremal dyonic black holes in heterotic string theory from ten-dimensional supersymmetry, JHEP 12 (2008) 088 [arXiv:0809.4954] [INSPIRE].

  46. [46]

    P.A. Cano, P. Meessen, T. Ortín and P.F. Ramírez, α′-corrected black holes in String Theory, JHEP 05 (2018) 110 [arXiv:1803.01919] [INSPIRE].

  47. [47]

    F. Faedo and P.F. Ramírez, Exact charges from heterotic black holes, JHEP 10 (2019) 033 [arXiv:1906.12287] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    P.A. Cano, S. Chimento, T. Ortín and A. Ruipérez, Regular Stringy Black Holes?, Phys. Rev. D 99 (2019) 046014 [arXiv:1806.08377] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys. B 550 (1999) 183 [hep-th/9812027] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    T. Ortín, Extremality versus supersymmetry in stringy black holes, Phys. Lett. B 422 (1998) 93 [hep-th/9612142] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    O. Hohm, A. Sen and B. Zwiebach, Heterotic Effective Action and Duality Symmetries Revisited, JHEP 02 (2015) 079 [arXiv:1411.5696] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    A. Font, L.E. Ibáñez, D. Lüst and F. Quevedo, Strong-weak coupling duality and non-perturbative effects in string theory, Phys. Lett. B 249 (1990) 35 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    Z. Elgood, P. Meessen, Á. Murcia and T. Ortín, work in progress.

  54. [54]

    G. Compère, Note on the First Law with p-form potentials, Phys. Rev. D 75 (2007) 124020 [hep-th/0703004] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    T. Jacobson and A. Mohd, Black hole entropy and Lorentz-diffeomorphism Noether charge, Phys. Rev. D 92 (2015) 124010 [arXiv:1507.01054] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    K. Prabhu, The First Law of Black Hole Mechanics for Fields with Internal Gauge Freedom, Class. Quant. Grav. 34 (2017) 035011 [arXiv:1511.00388] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    Z. Elgood, P. Meessen and T. Ortín, The first law of black hole mechanics in the Einstein-Maxwell theory revisited, JHEP 09 (2020) 026 [arXiv:2006.02792] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    P.B. Aneesh, S. Chakraborty, S.J. Hoque and A. Virmani, First law of black hole mechanics with fermions, Class. Quant. Grav. 37 (2020) 205014 [arXiv:2004.10215] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. [59]

    E.A. Bergshoeff and M. de Roo, The string effective action in the dual formulation of D = 10 supergravity, Phys. Lett. B 247 (1990) 530 [INSPIRE].

  60. [60]

    Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav. 24 (2007) 737 [hep-th/0611141] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    J.D. Edelstein, K. Sfetsos, J.A. Sierra-García and A. Vilar López, T-duality and high-derivative gravity theories: the BTZ black hole/string paradigm, JHEP 06 (2018) 142 [arXiv:1803.04517] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. [62]

    Z. Elgood, T. Ortín and D. Pereñíguez, The first law and Wald entropy formula of heterotic stringy black holes at first order in α′, arXiv:2012.14892 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomás Ortín.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.14618

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortín, T. O(n, n) invariance and Wald entropy formula in the Heterotic Superstring effective action at first order in α′. J. High Energ. Phys. 2021, 187 (2021). https://doi.org/10.1007/JHEP01(2021)187

Download citation

Keywords

  • Black Holes in String Theory
  • String Duality